Probing Cosmic Chemical Evolution with MeV Photons

Splinter Meeting

Astrophysical Extremes and Life Cycles of the Elements: Opportunities from the MeV Gamma-ray Sky Wednesday, January 10, 2018 from 1:00 pm - 4:30 pm National Harbor 8 at the Gaylord National

SOC: Fabian Kislat, Andreas Zoglauer, Roopesh Ojha

Physics at E-scale		T-scale
Particle	GeV	10 ¹³ K
Nuclear	MeV	10 ¹⁰ K
Atomic	keV	10 ⁷ K
Atomic	eV	10 ⁴ K
Molecula	r meV	10 K

"Temperature" E (MeV) $\sim kT_{10}$ Plasma Gaseous Fluid Solid 10.0 Evolution to core-collapse $M/M_{\odot} \le 100$: Z=0.02 $\Omega/\Omega_{crit} = 0.2$ $M/M_{\odot} \ge 120$: Z=0.001 $\Omega/\Omega_{\odot} = 0.2$ 9.5 $\log T_{c}(K)$ $\Gamma_{1} < 4/3$ Ne 30M_o 40M_o 9.0 50M_o 60M_☉ 70M_o 80M_ 90M_☉ 100M_o 120M_o 150M **MESA** 250M_o 8.5 500M Paxton et al. 1000M_o 8 10 6 $\log \rho_c (g \text{ cm}^{-3})$

non-thermal MeV astrophysics Nuclear Processes & Particle acceleration

Multiwavelength Astrophysics

Edited by France Córdova

1015 X Rays inirared Gamma Ravs Radiation 10¹⁰ Energy Flux (Hz - Jy) Radio-Frequency Optical Radiation Radiation 10 ENERGY FLUX INCIDENT ON THE EARTH FROM CYGNUS X-3 10¹⁰ 10¹⁵ 1020 10³⁰ 10²⁵ Frequency (Hz) 1010 1015 10⁻⁵ 105 Energy (eV) 10-29 10-15 102 10-5 10-10 Wavelength (m)

----> MeV Chauvinism is no good 🙂

TDA: Time Domain Astrophysics

MMA: Multi-Messenger Astrophysics

All Sky Monitoring – Fast Response

F. Cordova workshop: Taos, NM, August 1987

Cyg X-3 Giacconi et al. 1967 **50 years ago!** -

HMXRBs are characterized by two (or more) SED states which exhibit time variability on a variety of time scales

8

AGILE monitoringof Cyg X-3 (G.

Piano,+ 2012 A&A 545 SED during the main γ -ray events (non-sim. data) and the leptonic model. Blue: X-ray average "hypersoft" SED (Koljonen et al. 2010), RXTE-PCA and RXTE-HEXTE data (~ 3 to ~ 150 keV); red: AGILE-GRID (50 MeV to 3 GeV); magenta: MAGIC UL. In Outburst ATel 11127: Piano+

M. Urry and P. Padovani

Blazar sequence: SEDs change according to L_{bol}(jet): Ghisellini+ 2015, JHEAp 7

PKS 2149--306, a blazar at *z*=2.345

Tagliaferri et al 2015: Swift/XRT - NuSTAR, observing sim., 0.3--70 keV: Opt/UV bump due to the accretion disk, hard X—ray due to beamed jet emission (IC off photons produced by IR torus (hump at ~ 10^{13} Hz). **Archival data illustrate variability**. **Blazar power mostly around 1 MeV,** and are best found in hard X-ray surveys rather than >100 MeV surveys (of comparable $\nu F \nu$ sensitivities).

1925 - 2013

Underground-based: no detection 🙁

Nuclear Statistical Equilibrium (NSE)

Lanthanides and Actinides offer the largest atomic complexity -> Lines -> Pseudocontinuum opacity

 $Y_{e}(Nd) = Z/A = 60/144 \sim 0.4$

Nucleosynthesis studies need input from Lab Astro: nuclear masses, lifetimes, etc.:

Full use of kN spectroscopy requires input from **Lab Astro**: EBITs etc

World Wide Radioactive Beam Facilities

We have an MeV sensitivity gap

How to close the gap?

Larger Detectors Smarter Event Analysis Novel Concepts

See Talks on eASTROGAM AMEGO TAO/TAP COSI-X LOX

... we have many ideas, and \$/photon is high, so let us explore further why the MeV band is so important.

...it a) contains many sources whose power peaks there, and, b) it probes unique aspects of nuclear astrophysics

Puzzles:

- Why do most have single peaked lightcurves?
- Why are most are radio quiet?
- Why do their SEDs peak near MeV ?

- * Pulsars seen in hard X-ray but not by Fermi-LAT, peak in MeV band
- * 11 MeV pulsars known

 \odot Extreme E_{dot} > 10³⁶ erg

- Possible "hidden" population of energetic soft gamma-ray pulsars
- Emission might probe different part of the magnetosphere than GeV

Production (stars, CR spallation) & Redistribution SN-SNR-ISM Star Formation History & IMF

13.4 Gyrs later z_{ISM} ~ 2%

BBN

Multi-Messenger:

HHHH ... EYE OF

O, Stellar atmospheres
ISM gas abundances
Meteorites
Radioactivites, γ-lines

The players:

Sources

Isotope	Mean Lifetime	Decay Chain	γ -Ray Energy (keV)
⁷ Be	77 d	⁷ Be → ⁷ Li*	478
⁵⁶ Ni	111 d	$^{56}Ni \rightarrow {}^{56}Co^* \rightarrow {}^{56}Fe^{*}+e^{+}$	158, 812; 847, 1238
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122
²² Na	3.8 y	22 Na $\rightarrow ^{22}$ Ne* + e ⁺	1275
⁴⁴ Ti	89 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157
²⁶ A1	1.04 10 ⁶ y	$^{26}A1 \rightarrow {}^{26}Mg^{*} + e^{+}$	1809
⁶⁰ Fe	2.0 10 ⁶ y	60 Fe $\rightarrow ^{60}$ Co* $\rightarrow ^{60}$ Ni*	59, 1173, 1332
e⁺	10 ⁵ y	$e^++e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, <511

Diffuse

Key:
$$(M_{ej}/\tau) R_{event} F_{escape}$$

Novae: not yet detected In the MeV regime:

While Fermi established novae as GeV sources

Hernanz 2012

Galactic Rate ~ 40 / yr : Deep monitoring with Next-Gen Instrument could change this situation

We would learn about their dynamic envelope expansion

²⁶AI & ⁶⁰Fe

Coproduced in massive stars: Static He-shell burning s-process (the explosion only ejects!)

L.-S. The et al. 06: ⁴⁴Ti sources are rare events

The Galactic positron distribution remains largely unexplored

Nearby SF regions in The MW ISM are guaranteed sources that have yet to be detected

CR astrophysics holds clues to the galactic SFR, which is essential for GCE

Time-dependent ionization

SN2014J at 3.5 Mpc: Diehl et al 2015: INTEGRAL/SPI

Additional slides (not presented)

ACT study

Accretion onto compact objects creates ubiquitous disk-jet systems with time-dependent SEDs that exhibit important features in the Mev band that provide critical information.

