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Cold Telescope Offers Ultimate Capabilities
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SPICA: 3.15 m, 5.5 K with 4% emissivity and 75% aperture efficiency
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= BLISS-SPICA can
obtain spectra of
galaxies in the
Universe’s first billion
years as they are
borne, comparable to
JWST and ALMA in
sensitivity.

= Observing speed
scales as the inverse
square of the
sensitivity, factor of
1e6 beyond existing
facilities (for point
sources).

= Source confusion is
not a problem for

R~700 spectroscopy.




Cryogenic Far-IR Space Telescope

Field of View:

* Not a strong driver since spectroscopy will be
the emphasis.

10,000 spatial modes is 0.75 square degrees
(400 um, D=3m)

* ->2500 spectrometer pixels at the longest
wavelength.

 =>1square degree a good goal, somewhat less
is acceptable.

On-axis vs off-axis for cold telescope:
e Off-axis system preferred.
 CALISTO study indicates cold stop can

eliminate most of the ~6% which could be - N
scattered to large angles in an on-axis system,
but this may be able to be de-convolved, or CALISTO 4x6 meter off-axis

blocked with absorbing coatings on struts
* For point sources, on-axis may be OK.

, , _ * Efficient use of 5-meter fairing
* Requires further study for deep intensity without deployment
mapping experiments aiming to faint recover .
large-scale structure. * Deployed secondary on hinge

— Herschel SPIRE worked OK, but at the peak of * Deployed v-groove thermal
the CFIRB, not probing into lines. system.

e RMS ~ 1 micron goal.




Cryogenic Far-IR Space Interferometer
TARGET

SPIRIT concept: a double-Fourier
Interferometer.

Shares basic cooling requirement
with telescope, but multiplied 3x

Backend instrument TBD, similar

J Tm Telescope within
to that single-dish telescope.

: 3-layer thermal shield
Beam Combiner within Collimated

3-layer thermal enclosure ~ beamsentto =
, Beam Combiner

Moving delay lines consist of

cryogenic mechanisms, extensions
of e.g. Herschel SPIRE FTS
mechanism.

Boom extensions similar WA Ty & il
A o 5 Trolley at short
baseline position

Engineering problems (=cost) not

fundamental technology concerns. 3 layer passive

Thermal shields

SPT006
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Mirror will be blanked in pieces

CCAT segmented telescope

approach:

e Carbon-fiber spaceframe
truss with tuned CTE.

* 2-meter compound panels,

Al on CFRP.

AR
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Herschel sintered silicon carbide.
-> 12 ‘petals’ braised into full 3.5
meter monolithic mirror.
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How to cool observatory

Temperature ~ few Kelvin is required for both minimizing loading
from the telescope / optics and for backing sub-K coolers.

— Passive cooling can reach ~30-40 K, so active cooling is required.
— 6 K acceptable for optics, but need 4 K or below to back coolers.

Liquid helium bath presents challenges for both lifetime and agility
(e.g. spinning or fast slewing).

State of the art is warm launch with active closed-cycle coolers.
Coolers must be integrated with a careful system-level design
— Staged passive cooling is critical

L2 much better than earth orbit or even earth-trailing orbit.

— Earthshine in LEO is ~1/3 of the solar flux, and distributed over 2m
steradians, orthogonal to sun direction.

— L2 point has common earth-sun line and is 235 earth radii away.



Planck Thermal
Primary mirror ArCh iteCtu re

Telescope baffle Planck: 3 independent coolers + careful
system design.
* Hydrogen sorption cooler:
1 W at 20 K for 400 W in (JPL).
(unusually high 2.5% Carnot
FPU efficiency)
_ * Helium mechanical cryocooler: 15
Secondary mirror .\ at 4.5 K for 120 W in (RAL /
g \/-groove 3 EADs Astrium).
V-groove 2 * Dilution system with expendable
V-groove - 3He: 0.6 UW at 0.1 K + lift at 1.4 K
(Benoit et al.)

42 K

270 K [N 0 S > & =% SVM  Below V-grooves, loads are conductive.
" ' ‘ Should scale with mass.

e.g. at 4.5 K. 10 mW, including some
dilution precooling. 4 K mass < 10 kg

385 K —— i N , \ Solar panel
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- Planck Thermal

<— 1577 mW

— = Architecture
/ ifsomw_ —— o coolers Planck: 3 independent coolers + careful

328 mW FEM H
SOmWTSA | e ] system design.

* Hydrogen sorption cooler:

1 W at 20 K for 400 W in (JPL).
(unusually high 2.5% Carnot
efficiency)

* Helium mechanical cryocooler: 15
mW at 4.5 K for 120 W in (RAL /
EADs Astrium).

* Dilution system with expendable
3He: 0.6 UW at 0.1 K+ liftat 1.4 K
(Benoit et al.)

PR W Below V-grooves, loads are conductive.
ﬁ 1w Should scale with mass.

e.g. at 4.5 K. 10 mW, including some
dilution precooling. 4 K mass < 10 kg

13980 W 13820 W



From Planck to a large cold telescope?

Must increase 4 K cooling to:

* Cool large telescope

— E.g. 3 m telescope, loading scales with mass for optimized
structure. E.g. 10 kg / m”2 for silicon carbide -> at least
100 kg.

— Planck < 10 kg for 15 mW

— Not possible to scale from Planck. Need to support launch
loads with separate break-away structure, leaving
lightweight optimized truss.

* Support recycling of sub-K coolers for instruments.
Open cycle dilution not an option for a long-life
mission.

* Will want 50-100 mW of cooling at 4 K for a large
telescope.



SPICA
Approach

Sun Shield

Baffle

/Telescope Shell

Inner Shield

Middle Shield ___ |

-
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— X-ray aperture

¥-ray microcalorimeter

Adiabatic demagnetization

refrigerator

Ligquid helium

Astro-H

A

Sumitomo
Coolers

4K-JT cooler
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Cooling a Sub-K Instrument Payload

*  We require 50-100 mK (below what is
ADR accessible with simple sorption systems).

stage * Step 1: want some kind of 1-2 K intercept.
~ External SPICA 3He JT works well.

— Alternative is a dilution system which
naturally provides 1 K pot. Benoit et
al have continuous dilution system,
still requires 2 K lift and external
compressor.

— 4He sorption a possibility as well.
 Then, use additional intercept at 0.3-0.5 K

— Dilution system is again ‘self-

intercepting,’

— 3He sorption a possibility
 Assume 20 kg cooled to 50 mK,
e  Support with ‘magic’ Ti (Ti 15-3-3-3) struts
cold sized to survive launch

interface — Parasitic loads are ~0.4-0.8 uW,
depending on intercept temperature.

— (Kevlar ~2 x lower load, but harder to
implement)

Aluminum
structural box

interface
Sorption
stage 1.7K
interface

interface

SAFARI cooler (Duband)
5/21/14 M. Bradford, FIR workshop 11



3-Stage ADR

I

100K 100K Shield

20K Shield
25T

. 1 T Shield

2ST 1.3K Shield

20K

- 15K 4.5K .. ............ bbb bbbl b el %

2ST

GGHS | GGHSE 3GGHS
ADR ADR

(GLF)
150g,3T

Astro-H
He dewar and JT cooler provide redundant cooling path. §
Top ADR stage can help cool He dewar.

When helium is exhausted, top stage provides 1.2 K.
Bottom 2 stages cool intercept and 50 mK calorimeter
single shot with 100 h lifetime (1-2 h recycle).

0.5 uW lift at 50 mK
0.2 mW to 1.2 K but higher peak loads

5/21/14 M. Bradford, FIR workshop &




BLISS Sub-K Cooling Appraoch:

A HIGH-HERITAGE DUAL-STAGE SUB-K COOLER

3He Sorption Fridge

+ Use two ‘Herschel’ coolers
at 300 mK to provide a
continuously-cooled
intercept stage.

* Use a single-shot ADR to
cool the spectrometers and

; detectors to 50 mK.

[P | «  24-hour hold time and
>90% duty cycle.

* Heat rejection requirements

to 4.5 K, 1.7 K consistent
with SPICA allocations

A R HS2
]

Herschel Heat Switches

o

ADR Heat Switch at
300mK

BLISS ADR prototype
BLISS sorption fridge prototype (p

ocured from Duband)

Hiperco
50

~ Magnet
e Shietds e

Kevlar Suspension w/ 50mK Salt Pill

300 mK intercept Thermal Post
5/21/14
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T(K) & powers (m)

with 7mW@4.5K and 3mW@1.7K . evi
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Continuous Sorption Intercept in Operation

Cyciling coolers

pump c1
pump c2

300mK
50mK RUo2
power 4.5K

power 1.7K

» Regulated stages at
1.7, 4.5 K allow
measurement of
rejected power

» Can tune to fit
SPICA allocations (e.g.
7mW, 3 mW +
parasitics)

* 50 mK prototype pill
under construction.
Likely CCA.

 With the right pill,
system can support 1
uW lift.

Thomas Prouve +
others (JPL)
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Parametric amplifier for RF-multiplexed system:s.

Microwave / RF multiplexed arrays require cold amplifier.

Current SiGe amps if pushed to lower power (single stage) dissipate ~3 mW.
Quickly becomes a problem for 4 K as instrument scales to several kpixels (several
readout lines). (Might be possible at 20 K on Stirling cycle.)

New superconducting parametric amplifier (para-amp) uses non-linearity of kinetic
inductance to provide gain. Low noise because mechanism is reactive, not
resistive. 2 photons of noise = e.g. 1 K at 10 GHz.

25 : , '  Measured gain ~ 20 dB, 1-2 GHz BW

* 0.8 mlong, NbTiN CPW
20 - A N * 35 nm thick, 1um wide
15 _______ _____ ° fpump =8.5 GHZ, ~100 MW
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Spectrometer Approaches

Future science requiring dispersive instrument which
multiplexes in both frequency and spatial position.

We have multiple detector options which are sufficiently
sensitive for dispersive spectroscopy.

Double-Fourier interferometer backend can also benefit
substantially from dispersion at the image plane.

Target e.g. R=200-500, from 40-400 microns with ~20-50
beams. Ny = Npeams X R In (10) = 23kpix minimum (™~ 5x
larger than SAFARI or BLISS).

— Can trade Rand N_beams.

Dispersive spectrometer works best over a single octave.
Processing a larger bandwidth tends to not couple
optimally to telescope.

— Wide-band antenna coupling a possible exception to this for low
frequencies



Slit-fed wideband spectrometers

820 mm

" swodule | LW Module This for STARFIRE:
2 arrays, each 32 (spatial) by 50
(spectral) KID pixels (3200 total)

w2 SW: 240-317 microns
LW: 317-420 microns
R=450, 2 grating setting each.

gratings ¢

Offner relay with pupil in front.

Telecentric focal plane for horn-
coupled TiN KIDs

Steve Hailey- VE M5
Dunsheath

Imager Module

_— Wideband spectrometer must

process large angles from the

ey

) grating.
7 Slit-fed spectrometers typically
have sizes many times R x A.
5/ vorkshop €€ Aguirre et al. poster. 17



WaFIRS: a more compact grating spectrometer

RS module for

| Stra

R:Z

50s

Hig

Grat
(top pl

Grating p
separatel
thick.

P LIk WaFIRS spectrometer on a 4” wafer

(7 T—— Design R=450 over 310-510 microns

3 Next: integrate detectors on output
Echternach, Reck, Bradford
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U-Spec concept: a compact integrated on-chip

spectrometer
Moseley et al. GSFC

Broadband Delay 2-D Feed Absorber Filter Bank _ Filter ~ MKID
Antenna & Lens Network / & Detectors i Bank Detector
Ty WW i+1 D]
i / —————— i D]
—————— i—1 D]
_< S P anary

Beam !

1
A\ =

A i
2-D Parallel Plate Waveguide Region

The py-Spec design uses delay lines to create the phase delay for R~1500

spectroscopy, and can be fabricated on a single 10 cm wafer in a volume 104
times smaller than conventional designs. It can produce diffraction-limited line
images across the focal surface. The synthetic grating operates in high order

(~10), and compact filter banks (right) separate the orders and direct them to
individual MKID detectors.
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U-Spec: a compact integrated on-chip spectrometer

Plane-wave absorber
boundary

(Au/Pd dots qn Si)

i)
{

/

5/21/14

Microwave Kirfetic Inddctance Detectors
M. Bradford, FIR workshop
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U-Spec: a compact integrated on-chip spectrometer

u-Spec spectrometer (R=64 version) * Frequency within 1 GHz of
design value by fab tolerances

e Channel width and spacing is
consistent with design within
measurement error

u-Spec chip demonstrating R=64
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A > 400 ym (due to Nb gap)
A < Mykip (= 700 pm for MoN trilayer MKID)
48 actual spectral channels

Spectrometer Response (a.u.)

Moseley et al. See Noorozian et al. poster
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On-Chip Filterbank Spectrometer

Incoming radiation sorted by narrowband 1

filters.

Filter is a half-wave section of transmission
line, Qis set by coupling in and out.

Each channel couples to a single KID.

Channel width and spacing are individually
tuned.

Single channel absorbs 50%, multiple
channels combine to couple up to ~80%
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SuperSpec first 80-channel test device

Erik Shirokoff (chip design), Theodore Reck (coupling)
(a) '




Optical Characterization: Swept Source

Chip has 3 different kinds of

detectors:

* Spectral channels

* Broad-band ~1% absorbers

* Terminators (at end of line (4
sequential)

Characterization of chip through a

combination of:

* Swept source (aka local-
oscillator) measurements --
high-power tunable source
provides detailed profile

* Blackbody response
measurements -- provides

radiometric response and noise.

* Fourier-Transform
measurements — measures
channel centers and constrains
out-of band response

1.0

0.8

0.6

0.4

—6fy/fo (normalized)

0.2

}K T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ |

0.0

|
186 GHz 18/ 188 189 GHz

source frequency [GHz]

Example channel profile measured with swept source.
Red is broadband response used to normalize the
channel response. Blue is the Lorentzian fit.

Steve Hailey-Dunsheath, chip characterization



Conclusions

Large-format spectroscopic back-end on a large cryogenic space telescope is a
compelling future for far-IR space astrophysics.

Participation in SPICA remains an near-term opportunity with excellent value and
demonstrates techniques for the future pathfinders.

RF / microwave frequency-multiplexed detector systems are coming close,
consider at least 20 kpixel for next generation mission.

Telescopes must be cooled to a few K. Mature technology exist, but careful
thermal design of the full observatory is required.

e With intercepts, 1 mW at 4.5 K for 8-10 W warm

e Full large system: e.g. 50-100 mW at 4.5 K: up to 1 kW of power -> 10 m?

e Launch-locks will be required for next-generation cryogenic telescopes.

Direct-detection systems have to be cooled to below 1K, so mass and volume are
important.

e Compact spectrometer technologies exist and are advancing.

e 1 uW of lift at 50 mK should support 20 kg.

e (Canbeliftedto~15mWat4 K+5mW at 1.7 K.

Balloon pathfinders are possible, but
e Sensitivity-wise it is difficult to overcome atmosphere and warm telescope.
e Operationally, gravitational and thermal deformations are also important

e 3-meter class CFRP systems can be passive to gravity and thermal deformations, larger
telescope may require active control.



