

Far-IR Community Workshop - May 12-13, 2014

Studying Nearby Galaxies with Future IR Space Telescopes

Karin Sandstrom University of Arizona

Vela C with Herschel PACS/SPIRE

Lockman Hole with Herschel SPIRE

Nearby galaxies bridge what we can learn in the Milky Way with what we learn from galaxy evolution

M31 from Herschel & Spitzer 24, 160, 350 µm

Vela C with Herschel PACS/SPIRE

Nearby Galaxies provide: Simpler lines of sight External perspective Full galactic context

Nearby galaxies bridge what we can learn in the Milky Way with what we learn from galaxy evolution

M31 from Herschel & Spitzer 24, 160, 350 µm

Vela C with Herschel PACS/SPIRE

Nearby Galaxies provide: Simpler lines of sight External perspective Full galactic context

Lockman Hole with Herschel SPIRE

Nearby Galaxies provide: **Resolved ISM distributions** Multiwavelength ancillary obs.

Nearby galaxies bridge what we can learn in the Milky Way with what we learn from galaxy evolution

M31 from Herschel & Spitzer 24, 160, 350 µm

- * The Life Cycle of Dust
- Calibration of Metallicity Scales
- Resolving SF Feedback Processes
- ISM Phase Balance

A biased & incomplete list...

Dust is a crucial part of the ISM but we are just beginning to understand its life-cycle.

- Dust-to-gas Ratio
- Grain Size Distribution
- Grain Composition
- * Grain Charge

How are these key parameters affected by galactic environment?

Dust emission in redshifted sub-mm range is a sensitive tracer of high-z galaxies with ALMA.

SED of galaxy forming 100 M_{sun} yr⁻¹ at z=5 SMA [0111] [01] 10 [CII] 1 Flux Density (mJy) 0.1 EVLA + GBT Line co ALMA Line 0.01 cs HCN ALMA Cont. 0.001 **EVLA** Cont 0.0001 10 100 1000 Frequency (GHz)

Sub-mm dust continuum as an ISM tracer requires knowledge of: dust-to-gas ratio sub-mm dust emissivity dust temperature

Studies of nearby galaxies needed to understand these key properties.

plot from A. Leroy

Galaxy-average dust-to-gas ratio is not a simple function of metallicity.

Remy-Ruyer et al. 2014 -Dwarf Galaxies Survey with Herschel

Galaxy-average dust-to-gas ratio is not a simple function of metallicity.

SF history & influence on dust life cycle seems to be key for setting DGR.

e.g. Lisenfeld & Ferrara 1998, Dwek 1998, Galliano et al. 2008, **Zhukovska et al. 2014**

Remy-Ruyer et al. 2014 -Dwarf Galaxies Survey with Herschel

Fisher et al. 2014 - Herschel Obs of I Zw 18 (HI contours)

DGR behavior may prove crucial for studying high-z galaxies.

DGR is not the only thing changing - composition & grain size distribution also vary.

The drivers of dust life-cycle act on small scales.

HI/H2 transition, SNe, irradiation, stellar winds

Need to resolve these scales...

NGC 6946 from KINGFISH Herschel PACS & SPIRE

Can do this in the very nearest galaxies with Spitzer/Herschel capabilities...

But understanding dust life cycle from the galaxy evolution perspective means *we need to move beyond the Local Group.*

Killer App: Molecular cloud scale maps of dust properties in nearby (D ≤ 20 Mpc) galaxies.

NGC3184,PSF=apert_S500_110_SSS_111,Model=MW_dUm_pl_fitAl_Umm_0.010 An

Aniano & Draine 2013.03.16

What will this require?

Molecular cloud scale resolution: ~ 50 pc which is $\sim 0.5''$ for D = 20 Mpc

Coverage of peak of dust SED: 70-300 μm

- ALMA alone isn't sufficient (doesn't get peak of IR SED, filters out larger scale structures)
- JWST alone isn't sufficient (only gets mid-IR)

Sensitivity target: measure dust mass of something comparable to Taurus (R~25 pc, $10^3 M_{\odot}$ of dust, T_d~15K) in a D=20 Mpc galaxy

What will this require?

Parameter	Units	Value or Range
Wavelength range	μ <i>m</i>	70-300 µm
Angular resolution	arcsec	~0.5" for 50 pc in a D=20 Mpc galaxy (well matched to ALMA and JWST)
Spectral resolution, $(\lambda / \Delta \lambda)$	dimensionless	n.a.
Continuum sensitivity	μ Ј <i>у</i>	10-100
Spectral line sensitivity	10e-19 W m	n.a.
Instantaneous FoV	arcmin	~1

We know *surprisingly little* about metallicity, even in nearby galaxies.

Mass-Metallicity relationship for SDSS z < 0.1 galaxies

range of metallicity calibrations gives order-of-magnitude uncertainty

Why?

We know surprisingly little about metallicity, even in nearby galaxies.

We know surprisingly little about metallicity, even in nearby galaxies.

Strong line calibrations require knowledge of n_e and T_e as well as A_v to compare with H α .

We know surprisingly little about metallicity, even in nearby galaxies.

Strong line calibrations require knowledge of n_e and T_e as well as A_v to compare with H α .

Temperature fluctuations in HII regions and faintness of line at higher Z complicate "direct" abundances.

We know surprisingly little about metallicity, even in nearby galaxies.

Strong line calibrations require knowledge of n_e and T_e as well as A_v to compare with H α .

Temperature fluctuations in HII regions and faintness of line at higher Z complicate "direct" abundances.

Solution may be found by using far-IR [OIII] lines.

With measurements of both [OIII] 52 and 88 μ m get very good handle on O⁺⁺ abundance.

To get O/H, still need: - ionization correction for total O - measurement of H⁺

Mid-IR lines with JWST: Brackett, Pfund, Humphreys lines of H; ionization from [Ne III]/[Ne II], [S IV]/[S III], [Ar III]/[Ar II]

Killer App: Measurements of [OIII] 52, 88 μm matched to mid-IR diagnostics from JWST, covering many HII regions in a galaxy.

Croxall et al. 2014, in prep.

What will this require?

Parameter	Units	Value or Range
Wavelength range	μ <i>m</i>	50-100 μm
Angular resolution	arcsec	~few"
Spectral resolution, $(\lambda / \Delta \lambda)$	dimensionless	1000-5000 comparable to PACS
Continuum sensitivity	μ J y	<i>n.a.</i>
Spectral line sensitivity	10e-19 W m	comparable to MIRI, 0.1-1
Instantaneous FoV	arcmin	~1
Number of target fields	dimensionless	more is better to get several HII regions per pointing

One other thing this will require: Coordination with JWST observations!

The importance of feedback in the regulation of star formation is widely recognized.

In simulations - feedback is needed to match star formation histories, stellar masses, disk properties of galaxies.

What is the dominant feedback source? How does that vary with environment?

Type I no massive star formation

Type II only HII regions

Type III HII regions and young clusters

Possible to observe GMCs at various evolutionary states now with ALMA in nearby galaxies (~0.1-1" scales).

Cloud properties vs evolutionary state tells us about feedback. (gas temp, dust temp, velocity dispersion, etc).

These questions can be addressed by studying molecular gas excitation with high-J CO for individual clouds.

ALMA will be great for lower CO rotational levels at GMC scales.

Herschel SPIRE-FTS made exciting progress on ~kpc scale.

¹²CO ladders in NGC 3627 from the Herschel Program "Beyond the Peak" (PI JD Smith)

Other lines in the far-IR will be interesting for feedback studies as well. (e.g. H₂O, rotational lines of other molecules, OH+).

¹³CO ladder gives excellent handle on gas properties.

Killer App:

¹²CO and ¹³CO high-J ladders for many individual GMCs at various evolutionary states in nearby galaxies.

Matched ALMA resolution in nearby galaxies ~1" for low-J CO lines.

SPIRE-FTS has done these type of observations on kpc scales for ¹²CO, necessary sensitivity on ~50 pc scales will depend on clumpiness, factor of >10 improvement for ¹³CO ladder.

What will this require?

Parameter	Units	Value or Range
Wavelength range	μ <i>m</i>	200-600 µm
Angular resolution	arcsec	~1″
Spectral resolution, $(\lambda / \Delta \lambda)$	dimensionless	comparable to SPIRE FTS, 300-1500
Continuum sensitivity	μ Jy	n.a.
Spectral line sensitivity	10e-19 W m	~1-10 (for 13CO ~1)
Instantaneous FoV	arcmin	~1

Pineda et al. 2013; GOT C+

New high velocity resolved [CII] 158 μ m observations have given new insight into ISM phases in the MW.

Comparison with HI, CO at comparable resolution - separate different phases contributing to [CII].

Herschel Key Program GOT C+

Langer et al. 2014, Pineda et al. 2013, Velusamy et al. 2012, and others

Langer et al. 2014; GOT C+

GOT C+ measurement of COdark H₂ fraction in the MW ISM. High-velocity resolution [CII] compared to CO/HI is one of the only ways to directly detect "CO-dark" H₂.

Maloney & Black 1988, Bolatto et al. 1999, Wolfire et al. 2010, Glover & Mac Low 2011

Some studies in nearby galaxies with Herschel-HIFI (esp. HerM33es)

Several recent or planned SOFIA-GREAT observations

Killer App:

High velocity resolution *mapping* in nearby galaxies, e.g. GOT C+ in other galaxies.

What will this require?

Parameter	Units	Value or Range
Wavelength range	μ m	50-250 μm ([CII] 158 μm, [OI] 63 μm, [NII] 122, 205, others)
Angular resolution	arcsec	~few"
Spectral resolution, $(\lambda / \Delta \lambda)$	dimensionless	~10e6
Continuum sensitivity	μ Ј у	<i>n.a.</i>
Spectral line sensitivity	10e-19 W m	~1 (based on kpc-scale [CII] in nearby galaxies + need to measure detailed line profile)
Instantaneous FoV	arcmin	multi-pixel array is best - map ~arcmin size fields

Observational Goals for Nearby Galaxies

Summary:

- ~1" resolution in far-IR continuum and line observations.
- Coordination between ALMA and JWST observations and future far-IR telescope - needs planning since at least JWST probably won't overlap.
- * High velocity resolution far-IR line observations.