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“2.. Why Interferometry? %

Interferometry provides the flexibility needed to satisfy
science-driven measurement requirements within
externally-imposed constraints, and without paying a
penalty for a self-imposed constraint.

Space mission design is systems engineering; it’s an
optimization problem.
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Wavelength range um

Angular resolution arcsec
Spectral resolution, (A/AA) dimensionless
Continuum sensitivity wly

Spectral line sensitivity 101° W m™

Instantaneous FoV arcmin

Number of target fields dimensionless

Field of Regard Sr
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Q Jeo  Diffraction is our Enemy"
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Wavelength range um

Angular resolution arcsec
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Stellar Interferometer with 6 m baseline, c. 1919
b=2A/26

=10.3 (A/100 um)(6/1 arcsec)™ meters
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Michelson’s Stellar Interferometer, c. 1919 James Webb Space Telescope, c. 2018

These are both Fizeau interferometers.
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As discussed by Wright (1999; see

www.astro.ucla.edu/~wright/Jun99AAS/):

e a background-limited, diffraction-limited
telescope this size would reach the
confusion noise floor (~100 uly) in about 5
milliseconds!

* The integration time needed to reach a

Practicalk <l >




rddond Singié Aperture: N
A Self-imposed Constraint

If the goal is to achieve sub-arcsecond
angular resolution with adequate
sensitivity, it makes no sense to impose
the constraint that the aperture should
be monolithic and needlessly large.

Large means more mass to cool to ~4 K,
more mass to launch, and more Ss.



dded ' Flexibility to Meet = %
Measurement Requirements

Design parameters

* Maximum baseline
* uy-v plane coverage

Wavelength range

Angular resolution * Optical delay scan range (FTS)
_ for A/AN up to ~10*

Spectral resolution, (A/AA) o Heterodyne ford/Ak>> 103

Continuum sensitivity

Spectral line sensitivity - : ﬁpert}ure Sfl%cel
 Number of telescopes

Instantaneous FoV

Number of target fields \

Field of Regard .
\\

Many knobs to turn in design and
operation. Nothing is wasted or over- * Sun shield size and

constrained. configuration
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Heterodyne detection

Pros: Cons:
* Spectral resolution ¢ Quantum noise-
>10° limited sensitivity
* Small FoV
* Limited u-v coverage
if apertures are free-
flying

12 May 2014

First Look at the Trade Space:
Heterodyne vs. Direct Detection

Direct detection

Pros: Cons:

* Astrophysical e Spectral resolution
background photon <10*
noise-limited
sensitivity

* Imaging and
spectroscopy in 1
instrument

-,

D. Leisawitz, NASA GSFC - Far-IR Interferometry




dedA ' ESPRIT Concept: Hetefodyne

Space Flight Center

Exploratory Submillimeter Spaée Radio-Interferometric Telescope

See poster by Free-flying spacecraft in formation
Frank Helmich Drift w/ acceleration to sample baselines up to ~50 m
et al. Observe while drifting
Stack for launch (4 satellites), deployable secondary mirrors

Technology:
Collision avoidance

Correlator (in space)
Quantum Cascade Laser
LO distribution




dded ' ESPRIT Concept: Hetefodyne

Exploratory Submillimeter Spaée Radio—lnte_rfe’rometricé Telescope

See poster by _ u-v plane coverage
Frank Helmich :
et al.
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QW SPIRIT Conce pt: Direct Detectionm}{f,

* * N BRI ©
Space Infrared Interferometric Telescope

See poster by Structurally-connected interferometer

Dave Leisawitz Two 1-m afocal off-axis telescopes

et al. Telescopes move radially, and structure rotates to
provide dense u-v plane coverage with maximum
baseline ~36 m, 6 = 0.3 arcsec (A/100 um) imaging
Integral field spectroscopy in 1 arcmin instantaneous FoV,
spectral resolution A/AA > 103
Technology:

e 1012 W Hz'Y/2, 200 us detectors in 14x14 pixel arrays

or 4 K telescope D mK Tocal plane
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o Available in hardcopy, and linked to
the workshop web site.

An Overview of Studied Far-Infrared Mission
Concepts and Their Measurement Capabilities

Includes concise descriptions of
ESPRIT, SPIRIT, and the Submillimeter
Probe of the Evolution of Cosmic
Structure (SPECS), a 1 km maximum
baseline direct detection

SPECS

Harwit et a

| o
.

vision mission” study (2005)

May 6, 2014
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Launch vehicle

* Lift capacity to desired orbit (e.g., Sun-Earth L2)

* Fairing dimensions

* Interferometers tend to be volume-limited, not
mass-limited (e.g., trade collecting area for
baseline length)

Affordability
* Cost estimates become increasingly accurate as
desigh concepts mature
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An In“terferometerTn |
Sweet Spot’-‘

Compelling
science case, with .
broad basé of pesanice: '
, iy feasibility Expensive
support In the , (Decada|)

community / missions only

happen if they

live here
Affordability in

Public interest the next decade

D. Leisawitz, NASA GSFC - Far-IR Interferometry
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Qrﬂ‘w( An In‘%erferometermwi
Sweet ont’ A

Image protoplanetary disks and measure the
distributions of water vapor and ice to learn
how the conditions for habitability arise

Compelling during the planet formation process;

science case, with
broad base of Image structures in a large number of debris
support in the disks to find and characterize unseen

itv?
Aelaliinlisy exoplanets;

<
L - * Make profound contributions to our
SRR - understanding of the formation, merger
W;nnn history, and star formation history of
m‘m@ galaxies, including the role of AGN in galaxy
evolution.
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q rldad '\ An In“terferometer'm
Swe_w."_e_,t’ 9pot?' & |

* Iconic images fit for the front page of the NY
Times

* A profound and easy-to-understand goal:
“Tracing our origins from ‘stardust’ to the

Public interest? formation of habitable planets”

' o
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Qrﬂ‘w( An In‘%'erferometerm%
Sweet ont’ ‘

With coordinated effort, all mission-enabling
technologies can be matured to TRL 6 by 2018.

ROSES SAT and APRA programs provide funding
opportunities.

Technical
feasibility?

Technologies 2014 2015 2016 2017 2018

Working 109 W/rt HzNEP devices  Multiplexing in formats of 256 elements

Detectors Active R&A programs ‘ . . ' .

TESand MKID Continuous ADR/
. Cryocooler Demo

Cryocooler handoff - ‘
o omawsT HH} S uWat 50mK

1 uWat30mK

2013

I 72mWat 4K, 180 mWat 18K
Cryo-thermal ‘ CADRfrf;amncli; (f)f . CADR electronics . ‘ \/.
systemand | H
ayocoolers 4-stage, 50 mK 5-stage, 30 mK
Handoff from
SCOTT testbed [

Modeled, scalable ground test Scalable system test

'«t\\\ Wid ﬁll ' 7
: doubleFourier | Active R&A program H
e = interferometry . . Ig Technology Readiness Level (TRL) l

Testbed data, optical system model, algorithms
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Space Flight Center

SPIRIT was the subject of a robust Pre-Phase A
study in 2004-5.

Grass roots and independent parametric cost

estimates agree to within 20%.
Affordability in & °

the next decade? Single instrument, small (1 m) telescopes

Total lifecycle cost ~S1.25B (FY09); estimate
prowded to the Decadal Survey (whlte paper
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Gt Conclusions '

)

* Interferometry provides the flexibility needed to satisfy
science-driven measurement requirements subject only to
externally-imposed constraints.

* The SPIRIT study indicates that an affordable interferometer
capable of making groundbreaking scientific discoveries can
be developed for launch during the next decade.

* The SPIRIT design concept is flexible and can be adapted to




