The Space Infrared Interferometric Telescope (SPIRIT):

A Far-IR Observatory for High-resolution Imaging and

Spectroscopy

The NASA Astrophysics Roadmap calls for a far-IR interferometer - the
“FIR Surveyor” - to deliver “crucial science” in the Formative Era (2020s),
where it would serve as“a logical starting point”and “a training ground”
for more ambitious shorter-wavelength interferometers in the Visionary
Era (2030s and beyond). A “Probe-class” far-IR interferometer is well
within NASA's technical and fiscal means and motivated by some of the
most compelling questions posed in the Decadal survey.

SPIRIT is a two-telescope Michelson interferometer operating over the
far-infrared wavelength range 25 to 400 um and offering a powerful
combination of spectroscopy (A/AX ~ 3000) and sub-arcsecond angular
resolution imaging (integral field spectroscopy) in every
arcminute-sized field observed. With angular resolution two orders of
magnitude better than that of the Spitzer Space Telescope, and with
comparable sensitivity, SPIRIT will revolutionize our understanding of
the formation of planetary systems, map debris disk structure to find
otherwise-undetectable planets, and make profound contributions to
our understanding of the formation and evolution of galaxies.

SPIRIT has two afocal, off-axis telescopes with 1 m diameter primary
mirrors. Its single scientific instrument serves a dual purpose: it
combines the telescope beams and provides variable optical delay for
Fourier transform spectroscopy, a technique now approaching TRL 6

(see companion poster on Wide-field Spatio-spectral Interferometry).
The SPIRIT telescopes are moveable across the length of a rotating 36 m
long structure and are thus capable of densely sampling the u-v plane
for high-quality imaging. Cryocoolers similar to the one developed for
JWST are used to cool the optics to 4 K, cold baffles reject stray thermal
radiation, and next-generation detectors cooled to ~50 mK will enable
measurements limited by astrophysical background photon noise.
Metrology tolerances are coarser than those in interferometers or
segmented mirror telescopes designed to operate at shorter
wavelengths; alignment and pathlength control are well within reach of
current technical capability, leaving only subsystem details to be
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interferometers - BETTII and FITE - will fly in the next couple of years. :
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SCIENTIFIC OBJECTIVES
FROM THE DECADAL SURVEY
« Discover how the conditions for planet

habitability arise during the planet
formation process. (Follow the water!)
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* Find and characterize exoplanets by
imaging and measuring the structures in
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protoplanetary and debris disks, and by Young star with Pre-main sequence star,
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Angular Resolution 0.3 (/100 pm) arcsec Figure 1. SPIRIT will map the distribution of gas and dust in young and Figure 2. With angular resolution a hundred-fold better than
developing planetary systems to test theoretical models and elucidate the that of Spitzer, SPIRIT will image a large statistical sample of
Spectral Resolution 3000 planet formation process. SPIRIT will trace the distribution of water in its debris disks (a) and protoplanetary systems (b), enabling new

gaseous and solid states and teach us how our planet acquired its
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Figure 3. For the first time, SPIRIT will isolate the rest frame far-IR
emissions of individual non-local extragalactic objects in the important z < 3
redshift range. Major interstellar cooling and diagnostic spectral lines and
features will be accessible to SPIRIT, complementing the measurement
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Figure 4. SPIRIT will deliver one hundred times better angular resolution
than Spitzer, and resolution comparable to that of JWST, but at ten times
longer wavelengths, where protoplanetary disks, debris disks, and some
galaxies emit most of their light.
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enabling technologies from their present state to TRL 6 in four years,  to be used on SPIRIT (see companion poster paper)
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Figure 6. Major of the SPIRIT
are two movable afocal off-axis telescopes and a single
beam-combining instrument. SPIRIT densely samples
the u-v plane and provides high-quality images.
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Figure 5. SPIRIT combines the capabilities of an imaging interferometer
(e.g., CARMA, lower left) with those of a Fourier Transform Spectrometer
(e.g., Cassini/CIRS, upper left) to produce spatial-spectral data cubes.

Figure 7. SPIRIT and its expendable launch
support structure (left, two views), when stowed
for launch, are 8.7 m tall and fit into an EELV 5 m
medium-length fairing dynamic envelope.
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Figure 10. TES bolometers (a) or MKIDs are viable (2
candidate detectors for SPIRIT. With straightforward
modifications, the JWST cryocooler (b) and the
Continuous Adiabatic Demagnetization Refrigerator
(CADR; ) will reach TRL & for SPIRIT. Heat loads and
cryocooler requirements were based on a 106-node
thermal model (d, left). Subscale cryothermal testing
in a LHe shroud validated the model (d, right).
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BALLOON-BORNE PATHFINDER
FAR-INFRARED INTERFEROMETERS

Figure 11. Japan has built and will soon ]

fly the Far-Infrared Telescope Experiment
(FITE; far right), a balloon-borne far-IR
Fizeau interferometer (H. Shibai, P1).

The Balloon Experimental Twin Telescope
for Infrared Interferometry (BETTII) is a
SPIRIT prototype, a spatio-spectral
Michelson interferometer, BETTII (S.
Rinehart, PI) is in development with a first
flight planned in 2015. See companion
poster on BETTIL.
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http://astrophysics.gsfc.nasa.gov/cosmology/spirit/




