NSBF Overview

Balloon Working Group Meeting
Goddard Space Flight Center
June 30, 2003

Danny RJ Ball
Site Manager
National Scientific Balloon Facility
Flight Summary

<table>
<thead>
<tr>
<th>Flt #</th>
<th>P.I.</th>
<th>Date</th>
<th>Site</th>
<th>Science</th>
<th>Balloon</th>
<th>Payload Weight (lbs)</th>
<th>Flight Time (Hrs)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>504N</td>
<td>Binns</td>
<td>12/20/01</td>
<td>Antarctica</td>
<td>Cosmic</td>
<td>28L</td>
<td>3566</td>
<td>764</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>505N</td>
<td>Muller</td>
<td>05/25/02</td>
<td>Sumner</td>
<td>Cosmic</td>
<td>40H</td>
<td>8000</td>
<td>11.5</td>
<td>Balloon Failure</td>
</tr>
<tr>
<td>1580PT</td>
<td>Cathey</td>
<td>07/06/02</td>
<td>Palestine</td>
<td>SP Test</td>
<td>21SP</td>
<td>6000</td>
<td>3.7</td>
<td>Balloon Failure</td>
</tr>
<tr>
<td>1581P</td>
<td>Anspaugh</td>
<td>07/09/02</td>
<td>Palestine</td>
<td>Solar</td>
<td>3.4</td>
<td>677</td>
<td>6.4</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>1582P</td>
<td>Anspaugh</td>
<td>07/25/02</td>
<td>Palestine</td>
<td>Solar</td>
<td>3.4</td>
<td>695</td>
<td>4.9</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>506N</td>
<td>Yamamoto</td>
<td>08/08/02</td>
<td>Canada</td>
<td>Cosmic</td>
<td>40H</td>
<td>7000</td>
<td>23.2</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>507N</td>
<td>Clem</td>
<td>08/13/02</td>
<td>Canada</td>
<td>Cosmic</td>
<td>40L</td>
<td>3351</td>
<td>38.7</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>508N</td>
<td>Evenson</td>
<td>08/26/02</td>
<td>Canada</td>
<td>Cosmic</td>
<td>Big 60</td>
<td>1546</td>
<td>22.4</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>509N</td>
<td>Anspaugh</td>
<td>09/07/02</td>
<td>Sumner</td>
<td>Solar</td>
<td>3.4</td>
<td>670</td>
<td>4.7</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>510NT</td>
<td>Muller</td>
<td>09/16/02</td>
<td>Sumner</td>
<td>Cosmic</td>
<td>40H</td>
<td>8000</td>
<td>2.7</td>
<td>Science Failure</td>
</tr>
<tr>
<td>Flt #</td>
<td>P.I.</td>
<td>Date</td>
<td>Site</td>
<td>Science</td>
<td>Balloon</td>
<td>Payload Weight (lbs)</td>
<td>Flight Time (Hrs)</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>511N</td>
<td>Hanany</td>
<td>09/20/02</td>
<td>Sumner</td>
<td>CMBR</td>
<td>29X</td>
<td>5554</td>
<td>22.6</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>512N</td>
<td>Maurer</td>
<td>10/09/02</td>
<td>Sumner</td>
<td>Biophys</td>
<td>1.0</td>
<td>1336</td>
<td>8.7</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>513N</td>
<td>Margitan</td>
<td>10/13/02</td>
<td>Sumner</td>
<td>Atmos</td>
<td>4.0</td>
<td>1835</td>
<td>4.5</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>514N</td>
<td>Traub</td>
<td>10/20/02</td>
<td>Sumner</td>
<td>Atmos</td>
<td>29X</td>
<td>4092</td>
<td>9.4</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>515N</td>
<td>Wefel</td>
<td>12/29/02</td>
<td>Antarctica</td>
<td>Cosmic</td>
<td>29X</td>
<td>4927</td>
<td>477.6</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>516N</td>
<td>Ruhl</td>
<td>01/21/03</td>
<td>Antarctica</td>
<td>CMBR</td>
<td>29X</td>
<td>4753</td>
<td>361.7</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>517NT</td>
<td>Cathey</td>
<td>03/16/03</td>
<td>Australia</td>
<td>ULDB</td>
<td>21SP</td>
<td>6000</td>
<td>12.2</td>
<td>Balloon Failure</td>
</tr>
<tr>
<td>518N</td>
<td>Hanany</td>
<td>05/24/03</td>
<td>Sumner</td>
<td>CMBR</td>
<td>29X</td>
<td>5505</td>
<td>26.6</td>
<td>Ops/Sci Success</td>
</tr>
<tr>
<td>1583P</td>
<td>Kogut</td>
<td>06/15/03</td>
<td>Palestine</td>
<td>CMBR</td>
<td>11L</td>
<td>2852</td>
<td>10.7</td>
<td>Ops/Sci Success</td>
</tr>
</tbody>
</table>
TIGER

- 3600 LBS
- 32 Days
- Altitude > 110 KFT
- Continuous TM and Command
- Payload 100% recovered
“Big 60”

- 59.84 mcf balloon conceived and built in 60 days
- .4 mil shell, 2 X .52 mil caps co-extruded Stratofilm 430
- 202 gores
- Gore Length - 750 feet
- Inflated Diameter - 534 ft
- Inflated Height - 429 ft
- Balloon Weight - 2751 lbs
- Seals - 28.7 miles
- Surface Area - 21 acres
- Flight Train Height at Launch - 1000 ft
- Nominal/Max Payload: 1200/1650 lbs
- Nominal Pressure Altitude: 158,400 ft
Flight # 508NT - World Record

- World record for largest balloon ever successfully launched
- Flight 508N/Evenson - launched Aug 26, 2002 from Canada
- Payload - 1546 lbs
- Flight time: 22 hours
- Float Altitude: 160,300 ft (geometric), 0.84 MB
Failures

- 1580PT, 517NT - ULDB Super Pressure balloons failed - Cathey/Gibson to address

- 510NT/Muller - Science failure

- 505N/Muller - 40 mcf - 3 cap balloon failure (leaker)

- 40 MCF Heavy Load History
 - 23 flights, 18 successful, 5 failures (78% success rate)
 - 11 suspended weight 7500-8000 lbs (LSI = 1553 psi) - 3 failures
 - 8 suspended weight 7000-7500 lbs (LSI = 1511 psi) - 2 failures
 - 4 suspended weight < 7000 lbs - no failures
 - Failures attributed to high gross inflation, launch stress index, folding, spool damage, and dynamic launch
Heavy Load Balloon Redesign

- **Redesign of 40 Heavy Balloon**
 - Reduce LSI to 1400 psi
 - 36.734 mcf vs current 39.57 mcf
 - Float Altitude 119.9 kft vs 122.5
 - Co-extruded 0.8 mil shell with 3 X 0.95 mil caps
 - Longer caps
 - Collar placed 10 feet lower than current practice

- **Spool Padding**
 - 40 Heavy test inflation and inspection showed damage
 - Padding will be added to spool
Remaining FY’03 Flights (and FY’04 Antarctica)

<table>
<thead>
<tr>
<th>PI</th>
<th>SCIENCE</th>
<th>LAUNCH SITE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anspaugh/JPL (2)</td>
<td>Solar Cell</td>
<td>Palestine</td>
<td>July-August</td>
</tr>
<tr>
<td>Maurer/JHU</td>
<td>Biophysics</td>
<td>Palestine</td>
<td>July</td>
</tr>
<tr>
<td>Atlas/NCAR</td>
<td>Atmos</td>
<td>Palestine</td>
<td>August</td>
</tr>
<tr>
<td>Farman/NSBF (2)</td>
<td>SAPR Tests</td>
<td>Palestine</td>
<td>July-August</td>
</tr>
<tr>
<td>Rust/JHU</td>
<td>Solar Physics</td>
<td>Palestine</td>
<td>August</td>
</tr>
<tr>
<td>Mitchell/Yamamoto/GSFC/KEK</td>
<td>Cosmic</td>
<td>Fort Sumner</td>
<td>September</td>
</tr>
<tr>
<td>Devlin/Penn</td>
<td>CMBR</td>
<td>Fort Sumner</td>
<td>September</td>
</tr>
<tr>
<td>Boggs/UCB</td>
<td>High Energy</td>
<td>Fort Sumner</td>
<td>September</td>
</tr>
<tr>
<td>Harrison/Caltech</td>
<td>High Energy</td>
<td>Fort Sumner</td>
<td>September</td>
</tr>
<tr>
<td>Traub/SAO</td>
<td>Atmos</td>
<td>Fort Sumner</td>
<td>October</td>
</tr>
<tr>
<td>Toon/JPL</td>
<td>Atmos</td>
<td>Fort Sumner</td>
<td>October</td>
</tr>
<tr>
<td>Margitan/JPL</td>
<td>Atmos</td>
<td>Fort Sumner</td>
<td>October</td>
</tr>
<tr>
<td>Binns/Gorham WashU/U.Haw</td>
<td>Cosmic</td>
<td>Antarctica</td>
<td>December</td>
</tr>
<tr>
<td>Muller/U. Chi</td>
<td>Cosmic</td>
<td>Antarctica</td>
<td>December</td>
</tr>
</tbody>
</table>
New Payloads

- Dr. Eun-Suk Seo - U. Maryland, Cosmic Ray, CREAM - ULDB
- Dr. Atlas - NOAA/NCAR, Atmospheric Science, Air Sampler, CWAS - Conventional
- Dr. Boggs - UC Berkeley, Nuclear Compton Telescope, High Energy, NCT - LDB
- SUNRISE Collaboration - NOAA, Max Planck, Spanish Space Agency, Solar - LDB
- Dr. Bianchini - ASI, Mars Lander Terminal Descent System Test - Conventional
- Dr. Rust - Johns Hopkins, Solar Physics, Solar Bolometric Imager, SBI - LDB
- Drs. Mitchell/Yamamoto - GSFC/KEK, Cosmic Ray, BESS Polar - LDB
- Dr. Devlin - Pennsylvania University, Microwave Background, BLAST - LDB
- Dr. Harrison - Caltech, High Energy Astrophysics, HEFT - LDB
- Dr. Christl, MSFC, Biophysics, Deep Space Test Bed, DSTB - LDB
- Dr. Kogut - GSFC, Microwave Background, ARCADE - LDB
- JPL - Mars Lander parachute tests - Conventional
- USAF - Nanosat Outreach Project - Conventional
- Dr. Ryan - U. New Hampshire, Megaball, Gamma Ray - Conventional
- Dr. Mlynczak - Langley, Atmospheric, FIRST - Conventional
“The Boss” - Antarctic Launch Vehicle

- Gross Vehicle Weight: 105,000 lbs
- Wheel Base Width: 12 ft, 5 in
- Total Vehicle Length: 50 ft, 4 in
- Engine: 460 horsepower Caterpillar diesel, 6 wheel drive, speed faster than advisable.
- Capability: 8000 lb payload, 15,000 lb gross inflation
- Pin Height: 36 feet
Engineering Development

- LDB TDRSS high gain antenna successfully tested - 50-150 Kbps

- LDB Iridium data modem successfully implemented - replaces INMARSAT and HF/ARGOS

- LDB LOS and OTH video compression capability for downlinking video

- New LDB PV cells selected - more durable at one half the cost

- New LDB charge controller implemented - more efficient, lower cost

- New LDB Pathfinder payload
Semi-Automatic Parachute Release (SAPR)

- Phase 2A testing completed – SAPR flown active with off line chute release squib.

- 12 successful flights during past year including 1 LDB flight in Antarctica. “Green Light” operational for night terminations.

- Report submitted to NASA/WFF

- Two live pure test flights planned this summer

- Goal is to implement SAPR for this year’s Antarctic campaign
Fort Sumner Facility Improvements

- 2 acres of asphalt added to launch area
- 300 degree launch finger
- Refurbishing Swedish crane for second launch vehicle
- Welding shop added
- Overhead hoist in old hangar
- Additional lighting
Upgraded Aircraft Support

- Two turboprops
- Two pilot crews
- All pilot labor subcontracted
- Universal telemetry seatpack
- Senior aircraft observer
- Electronics technician
New LDB Brazilian Launch Site

- Two potential sites identified
 - Araras - 22.3S, 47.3W
 - Bocubatu - 22.9S, 48.5W

- Both have launch area, hangars, and infrastructure to support LDB campaigns.

- Automatic weather stations being placed at both sites to assess which is best from a launch standpoint.

- Brazil to Australia mid-latitude LDB flights of 7-8 days
Safety, Reliability, and Quality Assurance

• S, R, & QA Manager hired June 2

• Norm Ennis
 – BS Aeronautical Engineering - Auburn, AA Electronic Technology, MBA nearly complete
 – 20 years experience as Quality Engineer and Manager
 – Member ASQE

• Reports directly to Site Manager
 – Responsible for creating and implementing a non-ISO quality system at NSBF covering all areas of activity including electronic, mechanical, balloons, operations, administration, and information technology.
 – Norm’s job will be to implement a credible, functional system without fundamental changes to the way NSBF does its job.
Suborbital Center of Excellence

- Funded through a grant from the Balloon Program Office
- Located at PSL/NMSU in Las Cruces
- COE charter is to promote education, research, outreach, and foster interest in Suborbital Programs in the secondary, undergraduate, and graduate educational communities.
- Formally dedicated in January 2002
- 12 Co-ops so far at Las Cruces, Wallops, and Palestine
- 2 open house days at Las Cruces for undergraduate and secondary students
Outreach

- ACES-Space Grant Workforce Development
- Marble Gauges
- American Horticultural Society
- Seattle High School Cosmic Ray Detector
New Balloon Contract

- PSL awarded contract effective April 1
- Four-year base contract
- Two three-year options
- Teaming with Raven, SWRI
- 35% of NSBF employees will qualify for PSL retirement benefits within 4 years (65% within the next 10 years).
NSBF Infrastructure Improvements
Shuttle Columbia Tragedy

- NSBF was Debris Collection Center.

- EPA, FEMA, National Forest Service, Coast Guard, FBI, American Red Cross, and seven government contractors operated out of NSBF between Feb and April.

- Up to 350 personnel located at NSBF. An additional 700 people in Palestine.

- NSBF supplied offices, power, Internet, supplies, security, garbage collection, and unlimited patience.
Tight Security!
No Respect!