Cross Cutting & Related Technologies:
Remotely Piloted Vehicles

Jenny Baer-Riedhart

NASA Dryden Flight Research Center/MS2083
jenny.baer-riedhart@dfrc.nasa.gov, (805) 258-3689
Customers & Customer Requirements

Technology Needs Summary

- Extreme Duration, High Altitude Solar Electric UAV
 - >100 kg payload, 65-100k ft altitude (months on-station)
 - <$3M unit cost and <$500/hour operations cost

- Conventionally Powered, High Altitude UAV Science Testbed or Commercial Mission Prototype
 - >300 kg payload, 65k ft altitude, >48 Hours Endurance
 - >300 kg payload, 85k ft altitude, >24 Hours Endurance
 - <$5M unit cost and <$750/hour operations cost
UAV Technologies

- **Propulsion**
 - Conventional–spark piston engine
 - Turbomachinery
 - Engine cooling
 - Solar-electric
 - Photovoltaics
 - Propellers
 - Battery

- **Structures and materials**
 - Composites (including boron)

- **Actuators**

- **Digital electronics**
 - Miniature, high performance
 - EMI/arcing

- **Flight management**
 - Redundant flight control
 - Reliable flight control sensors

- **Heat rejection**
 - Exchangers

- **Energy storage**
 - Regenerative fuel cells/electrolyzers
 - Rechargeable batteries

- **Command, control, communications**
 - Reliable, efficient
 - Satcom
 - Payload interfaces

- **Operations**
 - Efficient, low cost

- **Computer models and simulations**

- **Integrated sensors**

Extreme operating conditions–low Reynold’s number, speed, temperatures and pressure
Extreme Duration and Altitude
Solar-Powered Technology

ULDB Technology Roadmap

Centurion
- Daytime Demonstrator 1998–2002
- Goal–100k ft

Helios
- Day/night Demonstrator 1999–2005
- Goal–65k ft, Moderate Payload, Months Endurance

Pathfinder Plus
- Daytime Demonstrator 1995–2000
- World Record Altitude–80,200 ft–6 August 1998
Cross-Cutting Technologies - UAVs & ULDBs

- Light-weight fuel cells
- Electric Motors
- High Altitude propellers
- Energy Storage
- Power Management
- Flight Control Systems
- Data Links
- Vehicle Systems
- Propulsion Systems
- Trajectory Tracking & Impact Prediction
- Weather predictions & Statistical Information
- Operations
- UAV/ULDB Test Ranges
- Second ULDB Technology Workshop
 November 12, 1998
• Operation in National/International airspace
• Over-the-Horizon (OTH) communications
• “See-Detect/Avoidance” capability
• Certification criteria for Vehicles & Operators
• Safe, economical & reliable operations in a global environment
UAV Test Ranges

- UAVs require large areas for long periods of time for testing
- The Pacific Missile Range Facility in Kauai has proved to be a nearly ideal location for such testing
 - Large military airbase with facilities
 - Unobstructed airspace with cooperative FAA participation
 - Logistics support and telecom infrastructure in “austere” location
 - Local people easily trained to augment test operations
 - High tech support for test missions
 - Ideal science collection environment in the islands