SAFIR

The Single Aperture Far Infrared Observatory

Harold Yorke
Jet Propulsion Laboratory
Harold.Yorke@jpl.nasa.gov

March 13, 2003
Genesis of SAFIR

Huge science need and opportunity coupled with feasibility!

- SAFIR was recommended in the Decade Report for technology and concept development that would lead to future infrared missions.
- SAFIR was mentioned prominently in current Structure and Evolution of the Universe and Origins Theme Roadmaps.
- Recognized that large aperture, low temperature far infrared telescope is now achievable, especially with technology advances from JWST, SIRTF, and Herschel.
- Recognized SAFIR as a scientific successor to SIRTF and Herschel, and as a powerful scientific partner to TPF, JWST, and ALMA.
SAFIR is defined as a set of science objectives that answer key astrophysics questions in the far-infrared. Several concepts are being developed. Commonality in technology needs. Implementation will flow from science requirements and technology capabilities.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Science Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
<td>~10m</td>
<td>distant galaxies, circumstellar disks</td>
</tr>
<tr>
<td>Temperature</td>
<td>4K</td>
<td>Galaxy @ z=5</td>
</tr>
<tr>
<td>Wavelength</td>
<td><20-500+µm</td>
<td>coolant line emission (JWST, ALMA overlap)</td>
</tr>
<tr>
<td>Diffraction limit</td>
<td>λ≥40µm (1")</td>
<td>circumstellar disks, distant galaxies</td>
</tr>
<tr>
<td>Lifetime</td>
<td>>5 years</td>
<td>Productivity, time variability!</td>
</tr>
</tbody>
</table>
• Half the luminosity in the Universe is in far-IR! The young universe is redshifted there.
• Of the far-IR background, <1/3 is accounted for by discrete galaxies.
• Star formation -- near and far, now and long ago is an IR problem.
• The youngest primordial gas clouds will be visible only in the far-IR.
• Dust is nearly everywhere

JWST will detect the first galaxies -- SAFIR will understand why they hide!

Era of JWST and ALMA.
SIRTF, SPICA, Herschel are done.
SAFIR Key Science Drivers *(pre-SIRTF!)*

- Resolve the FIR background -- trace star formation to \(z>5\) in an unbiased way, measuring redshifts directly.
- Understand how primordial material forms stars. Proto-bulges and -disk formation in pristine gas. \(H_2 \ @ \ z=20\)?
- Understand role of active galactic nuclei in galaxy formation, and relevance to ULIRGS. Unification?
- Bridge gap between local high mass star formation and starburst galaxies.
- Track pre-biotic molecules from cores to planets.
- Identify voids in debris disks around stars.
SAFIR is a chemistry probe of the warm cosmos. Density and temperature structure of collapsing cores, chemical composition, ionization, turbulence, fractionation, synthesis, condensation, disk energetics, magnetic fields the stuff of protostars, proto-solar systems, debris clouds, comets, planets and the raw material of life

H₂ C, N, O MgH
H₂O CHₙ SiH
CO OH SH
HD LiH AlH etc. etc.
large pre-biotic molecules

Birth of a Planetary System

13 March 2003 • SAFIR: IEEE Origins Panel Discussion
Harold Yorke 6
SAFIR will offer orders of magnitude improvement in
- spectroscopic sensitivity
- point source detectivity

no confusion limits for spectroscopy!
Flavors of SAFIR

- JWST-like
 - max system validation

- sparse aperture
 - maximize baselines
 - deployment simplicity

- “DART” w/ membrane mirrors
 - large aperture/weight ratio

- commonality in technology needs
 - deployment, active surface control
 - large format, low noise detectors
 - cryocoolers, thermal management
 - large, lightweight optical structures

13 March 2003 • SAFIR: IEEE Origins Panel Discussion Harold Yorke
A Thermal Strawman Design for SAFIR
(cooling is the biggest challenge… maybe we can do better?)

- <40K “JWST plus” sunshade
- 15K actively cooled shield blocks sunshade; 1W lift
- 4K actively cooled telescope under shield; 85mW lift
- 50 mK actively cooled focal plane; 10µW lift

SOA suggests that thermal requirements are achievable!
SAFIR Cryogenic Technology

we’re not far from where we need to be!

SAFIR strawman targets

13 March 2003 • SAFIR: IEEE Origins Panel Discussion Harold Yorke
But why 4K for SAFIR?

Because it makes a big difference!

A 4K scope is background-limited (zodi @ <200µm, CMB @ >200µm)

At these wavelengths, point source sensitivity is more dependent on temperature than on aperture!
SAFIR Observatory Critical Technologies

incremental steps …

- cryogenic, deployable large apertures
 - actuators, latches, mirror substrates
 (zero-G proof-of-concept highly desirable)

- optimized sun shield technology
 - material properties, refine designs
 (LEO or L2 proof-of-concept highly desirable)

- thermal transport technology
 - gas flow, capillary technology
 (zero-G proof-of-concept highly desirable)

- cryocooler technology
 - extension of ACTDP at 4-20K
 - augment existing ADR capabilities at 50mK-4K
SAFIR Focal Plane Critical Technologies

- new spectrometer architectures (scaled-up versions of IR spectrometers are huge)

- focal plane cooling technologies for <100mK

- large-format (10^3-10^4 pixel) broadband arrays
 - semiconducting and superconducting (TES) bolometer arrays
 - Ge, Si BiB photoconductor arrays
 - SQPCs

- quantum noise-limited heterodyne spectrometers
Summary

- SAFIR will enable very compelling Origins and SEU science
- SAFIR is technologically challenging but within our grasp