
1

Black hole astrophysicsBlack hole astrophysics  inin
the new centurythe new century

Chris Reynolds
Department of Astronomy

University of Maryland

Armitage & Reynolds (2004)

X-ray probes of strong gravity and cosmic feedbackX-ray probes of strong gravity and cosmic feedback



2

A new era of black hole researchA new era of black hole research

• Existence of both stellar and
supermassive black holes
seems secure
– Exotic physics required to

escape black hole conclusion
in Galactic Center

• Every galactic bulge seem
to host a supermassive black
hole

Movie from Genzel group
Similar work by Ghez group
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The wider importance of black holesThe wider importance of black holes

• Supermassive black holes
have cosmological
importance…

• Energy output from black
holes growth may be
crucial factor in
formation/evolution of
massive galaxies

• Galaxy and SMBH growth
coupled by powerful
feedback processes

Kormendy & Gebhardt (2001)
Gebhardt et al. (2000)
Ferrarese & Merritt (2000)
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Open issuesOpen issues……

• Are black holes really described by General Relativity?
– Is the Kerr metric a good description of black hole spacetime?

• How does black hole accretion and jet production work?
– How is accretion energy channeled into radiation & kinetic energy?

– What is the role of black hole spin?

• How is massive black hole growth and galaxy formation
coupled?
– How do feedback processes couple enormous spatial scales?
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OutlineOutline

• Talk about progress due to developments in X-ray
instrumentation

• Probing the strong gravity regime with X-ray spectroscopy
– The robustness of the relativistic signatures

– Confronting accretion disk theory with data

– Measurements of black hole spin

• Large scale environmental impact of black holes
– The cooling flow problem and the radio-galaxy solution

– Difficulties faced by radio-galaxy feedback models and possible solutions
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• ASCA observation of MCG-6-
30-15…

– Revealed extremely
broadened/skewed iron
emission line (Tanaka et al.
1995)

– Confirmed by XMM

• What are we seeing?
– Believe line to originate from

surface layers of innermost
accretion disk

– Line broadened and skewed by
Doppler effect and
gravitational redshifting

I : PROBES OFI : PROBES OF  THE STRONGTHE STRONG
GRAVITY REGIMEGRAVITY REGIME

Power-law continuum subtracted
ASCA: Tanaka et al. (1995)
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Iron line from X-ray reflectionIron line from X-ray reflection

Backscattered spectrum from X-
ray irradiation of the “cold”
optically-thick disk…
• Fluorescence/radiative recomb.lines
• Radiative recombination continuum
• Compton backscattered continuum

Self-consistent model of X-ray
reflection from ionized disk
(Ross & Fabian 2005)
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Iron lines in AGNIron lines in AGN
MCG-5-23-16 (Dewangan 2003)

PG 1211+143 (Pounds 2003) IRAS 18325 (Iwasawa 2004)

Lockman hole (Streblyanskaya et al 2004)
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Iron lines in GalacticIron lines in Galactic
Black Hole BinariesBlack Hole Binaries

GX 339-4 (XMM)

GX 339-4 (CXO)

GRS 1915+105 (CXO)

XTE J1650-500 (XMM)
JM Miller

Rin=2.9+
-0.1
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COMPLEXITY FROM ABSORPTIONCOMPLEXITY FROM ABSORPTION

Must be careful to account for effects of absorption…

MCG-6-30-15 (XMM-Newton)
Brenneman & Reynolds, in prep
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• Fitting 3-6keV and 8-10keV band, can reproduce “red-wing”curvature
from iron-L absorption (Kinkhabwala 2003; PhD thesis)

• Generic prediction - significant iron K line absorption from FeXVII-
FeXXIII (~6.4-6.6 keV)

NW=4e22
log(ξ)=2.2
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MCG-6-30-15; 522ks Chandra-HETG observation

[Young, Lee, Fabian, Reynolds et al., ApJ, 2005]

Clearly do not
see the
FeXVII-
FeXXIII abs
lines that
accompany a
“broad-line
mimicking”
WA



15

TESTING BLACK HOLETESTING BLACK HOLE
ACCRETION DISK MODELSACCRETION DISK MODELS

• Current paradigm
– Accretion proceeds through

disk due to MHD turbulence
(Shakura & Sunyaev 1973;
Balbus & Hawley 1991)

– Full GR-MHD simulations of
non-radiative disks possible

• Radiatively-efficient disks
– Gross properties amenable to

semi-analytic modeling
– Novikov & Thorne (1974)

o Geom. thin, efficient disk
o Material plunges into BH

ballistically once within the
innermost stable circular
orbit

Hirose et al. (2004); also see Koide et al.
(2000), McKinney (2005), Komissarov
(2005).
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Iron lines broader than
predicted from NT disk
⇒ Irradiation more

centrally concentrated than
NT prediction

Underlying disk is
NT-like, but X-ray
irradiation does not

track local dissipation
(need light bending)

Irradiation tracks a
dissipation that is

much more centrally
concentrated than

NT law
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Gravitational light bending?Gravitational light bending?

• Suppose X-ray source is
base of a jet?
– X-rays will be

gravitationally focused onto
central parts of disk

– Can produce very centrally
concentrated irradiation
pattern!

– Data suggest h~few GM/c2

• Geometry first discussed in Fe-K line context by
Marttochia & Matt (1996)
• Applied to ASCA data for MCG-6-30-15 by
Reynolds & Begelman (1997)
• Applied to XMM data for MCG-6-30-15 by
Minuitti & Fabian (2004)
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Enhanced dissipation in centralEnhanced dissipation in central
regions of disk?regions of disk?

• Recent work suggests
importance of “torqued
accretion disks”

– Magnetic fields may lead to
continued extraction of
energy/ang-momentum of
matter plunging within ISCO

– Plunging matter exerts torque
on rest of disk

– Work done by torque
dissipated in innermost regions
of the disk

• In extreme case, this might
produce a Penrose process and
allow the BH spin to be tapped.

Analytic: Gammie (1999), Krolik (1999), Li
(2000), Agol & Krolik (2000), Garofalo &
Reynolds (2005)
Numerical: Hawley (2000), Hawley & Krolik
(2001), Armitage, Reynolds & Chiang (2001),
Reynolds & Armitage (2003)
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BLACK HOLE SPINBLACK HOLE SPIN

• Importance of spin
– Large energy store (upto 29%

of rest mass energy)
– Spin may retain memory of

black hole formation
– First step in testing Kerr metric

• Diagnose spin through its
effects on the accretion disk
structure

– Major effect change in the
location of the innermost stable
circular orbit (ISCO)
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If weIf we  assumeassume  nono  X-ray reflection fromX-ray reflection from
within the ISCOwithin the ISCO……

• For progressively more rapidly
rotating BHs…

– ISCO moves inwards to a
higher gravitational redshift
region

– For given inclination,
maximum redshift of iron line
increases

• Applied to long (350ks) XMM
dataset for MCG-6

– Data strongly prefers rapidly
spinning BH solution

– a = 0.95±0.04 Brenneman & Reynolds, in prep
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THE PROMISETHE PROMISE  OFOF
CONSTELLATION-XCONSTELLATION-X

• Constellation-X
– Major component of NASA’s

Beyond Einstein program
– Imaging spectroscopy with

superior spectral resolution and
collecting area

• Allows study of short-term
broad iron line variability

– Dynamical timescale
variability ⇒ trace orbits of
distinct structures in disk

– Light crossing timescale
variability ⇒ follow echos of
X-ray flares across disk

Constellation-X
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Similar features from outer disk
already hinted at by XMM-Newton
NGC3516 (Iwasawa et al. 2004) &
Mrk 766 (Turner et al. 2005)
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THE PROMISETHE PROMISE  OFOF
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Young & Reynolds (2000)
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II : MASSIVE BLACK HOLES &II : MASSIVE BLACK HOLES &
MASSIVE GALAXY FORMATIONMASSIVE GALAXY FORMATION

Benson et al. (2003)

• Galaxy luminosity
function
– Suppressed at high and low

luminosity end compared
with simply ΛCDM
predictions

– High-L suppression must be
more efficient that star
formation

• Do AGN suppress high-
end of galaxy LF?
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XMM-Newton observation of Virgo cluster
Matsushita et al. (2002)

Intracluster medium(ICM)
Hot (107-108K), tenuous
(0.001-0.1cm-3) plasma.

THE COOLING FLOW
PROBLEM

Cluster cooling flowsCluster cooling flows
Massive galaxyMassive galaxy  suppression in action?suppression in action?
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How canHow can  AGN jetsAGN jets  heat ICM heat ICM isotropicallyisotropically??
Cocoon structure; Scheuer (1974)

2-d hydro simulations
Reynolds et al. (2002)

Can heat isotropically by either
shock heating or dissipation of
sound waves
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Chandra observations ofChandra observations of  cooling-corecooling-core
clustersclusters

Cygnus-A
Smith et al. (2002)

Hydra-A
Nulsen et al. (2004)

Perseus-A
Fabian et al. (2000)

Abell 4059 / PKS2354-35
Heinz et al. (2002)

Virgo/M87
Young et al. (2002)

Synopsis:
Jet-blown cavities common
“Ghost” cavities common
Strong shocks elusive!
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Modeling the feedback loopModeling the feedback loop

• Feedback model ⇒ average
AGN heating balances ICM
cooling

• Analysis of ICM cavities shows
that kinetic power and cooling
luminosity are indeed related

• Nature must modulate AGN
fueling according to ICM
properties

• First attempts to model this…
– Ideal hydro model of jet/ICM

interaction
– Jet power proportional to

cooling flow rate
– FAIL to produce successful

balance
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Birzan et al. (2004)

Also see McNamara (2000)
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Does the Does the ““feedbackfeedback”” loop loop  work?work?

• Feedback model ⇒ average
AGN heating balances ICM
cooling

• Analysis of ICM cavities shows
that kinetic power and cooling
luminosity are indeed related

• Nature must modulate AGN
fueling according to ICM
properties

• First attempts to model this…
– Ideal hydro model of jet/ICM

interaction
– Jet power proportional to

cooling flow rate
– FAIL to produce successful

balance

Delayed fueling scenario
Vernaleo & Reynolds, submitted

Runaway cooling in the
equatorial regions
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What ingredients are missing fromWhat ingredients are missing from
the feedback model?the feedback model?

• MHD and Plasma transport
processes

– Thermal conduction and
Viscosity

– Dissipation of wave energy

– New instabilities of the ICM
atmosphere

• Precession of the jet axis
– Need to be quasi-isotropic on

cooling timescale (few×108 yr)

• Dissipation of energy stored in
global ICM modes?

Evidence for dissipation of sounds
waves by thermal conduction
(see Fabian, Reynolds et al. 2005)
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What ingredients are missing fromWhat ingredients are missing from
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• MHD and Plasma transport
processes

– Thermal conduction and
Viscosity

– Dissipation of wave energy

– New instabilities of the ICM
atmosphere

• Precession of the jet axis
– Need to be quasi-isotropic on

cooling timescale (few×108 yr)

• Dissipation of energy stored in
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3C401 (Chandra and MERLIN cont.)
Reynolds, Brenneman & Stocke (2005)
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ConclusionsConclusions
• New era of black hole research

– Detailed studies of black hole physics and relativistic accretion
– Impact of black holes on galactic scale structure

• Strong gravity studies with XMM and Chandra
– Robust signatures of strong gravity exist
– Measurements of black hole spin and signs of interesting spin-

related astrophysics
– Constellation-X and LISA will bring tremendously exciting future

• Jetted AGN and cluster cooling flows
– Puzzles; how are ICM cores being heated?
– Need for more physics
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The End
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Iron line variabilityIron line variability

Model : Miniutti & Fabian (2004)
Low flux data : Reynolds et al. (2004)
High flux data : Fabian et al. (2002)
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Enhanced dissipation in centralEnhanced dissipation in central
regions of disk?regions of disk?

• Recent work suggests
importance of “torqued
accretion disks”

– Magnetic fields may lead to
continued extraction of
energy/ang-mtm of matter
plunging within ISCO

– Plunging matter exerts torque
on rest of disk

– Work done by torque
dissipated in innermost regions
of the disk

• In extreme case, this might
produce a Penrose process and
allow the BH spin to be tapped.

Armitage, Reynolds & Chiang (2001)
Reynolds & Armitage (2001)
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The way forwardThe way forward

• Better modeling
– More physics (MHD, plasma processes)
– Put in cosmological setting

• Better data
– More deep Chandra observations
– Direct kinematics from high-resolution X-ray spectroscopy

(rebuild of Astro-E2?, Constellation-X)

Simulated Astro-E2 XRS data
Abell 4059 (z=0.049)


