Black hole astrophysics in the new century

X-ray probes of strong gravity and cosmic feedback

Chris Reynolds

Department of Astronomy University of Maryland

Armitage & Reynolds (2004)

A new era of black hole research

- Existence of both stellar and supermassive black holes seems secure
 - Exotic physics required to escape black hole conclusion in Galactic Center
- Every galactic bulge seem to host a supermassive black hole

Movie from Genzel group Similar work by Ghez group

The wider importance of black holes

- Supermassive black holes have cosmological importance...
- Energy output from black holes growth may be crucial factor in formation/evolution of massive galaxies
- Galaxy and SMBH growth coupled by powerful feedback processes

Kormendy & Gebhardt (2001) Gebhardt et al. (2000) Ferrarese & Merritt (2000)

Open issues...

- Are black holes really described by General Relativity?
 - Is the Kerr metric a good description of black hole spacetime?
- How does black hole accretion and jet production work?
 - How is accretion energy channeled into radiation & kinetic energy?
 - What is the role of black hole spin?
- How is massive black hole growth and galaxy formation coupled?
 - How do feedback processes couple enormous spatial scales?

Outline

- Talk about progress due to developments in X-ray instrumentation
- Probing the strong gravity regime with X-ray spectroscopy
 - The robustness of the relativistic signatures
 - Confronting accretion disk theory with data
 - Measurements of black hole spin
- Large scale environmental impact of black holes
 - The cooling flow problem and the radio-galaxy solution
 - Difficulties faced by radio-galaxy feedback models and possible solutions

I : PROBES OF THE STRONG GRAVITY REGIME

- ASCA observation of MCG-6-30-15...
 - Revealed extremely broadened/skewed iron emission line (Tanaka et al. 1995)
 - Confirmed by XMM
- What are we seeing?
 - Believe line to originate from surface layers of innermost accretion disk
 - Line broadened and skewed by Doppler effect and gravitational redshifting

Power-law continuum subtracted ASCA: Tanaka et al. (1995)

I : PROBES OF THE STRONG GRAVITY REGIME

- ASCA observation of MCG-6-30-15...
 - Revealed extremely broadened/skewed iron emission line (Tanaka et al. 1995)
 - Confirmed by XMM
- What are we seeing?
 - Believe line to originate from surface layers of innermost accretion disk
 - Line broadened and skewed by Doppler effect and gravitational redshifting

Power-law continuum subtracted XMM: Fabian et al. (2002)

I : PROBES OF THE STRONG GRAVITY REGIME

- ASCA observation of MCG-6-30-15...
 - Revealed extremely broadened/skewed iron emission line (Tanaka et al. 1995)
 - Confirmed by XMM
- What are we seeing?
 - Believe line to originate from surface layers of innermost accretion disk
 - Line broadened and skewed by Doppler effect and gravitational redshifting

Pseudo-Newtonian MHD simulation Ray-traced through Schwarzschild metric Armitage & Reynolds (2004)

Iron line from X-ray reflection

Backscattered spectrum from Xray irradiation of the "cold" optically-thick disk...

- Fluorescence/radiative recomb.lines
- Radiative recombination continuum
- Compton backscattered continuum

Self-consistent model of X-ray reflection from ionized disk (Ross & Fabian 2005)

Iron lines in AGN

MCG-5-23-16 (Dewangan 2003)

channel energy (keV)
PG 1211+143 (Pounds 2003)

5

10

2

Lockman hole (Streblyanskaya et al 2004)

Iron lines in Galactic Black Hole Binaries

GX 339-4 (XMM)

1.2

:-

0.9

2

4.

1.2 ratio

ω. L

4

atio

XTE J1650-500 (XMM)

6

Energy (keV)

8

JM Miller

11

COMPLEXITY FROM ABSORPTION

Must be careful to account for effects of absorption...

Generic prediction - significant iron K line absorption from FeXVII-FeXXIII (~6.4-6.6 keV)

MCG-6-30-15; 522ks Chandra-HETG observation

Clearly do not see the FeXVII-FeXXIII abs lines that accompany a "broad-line mimicking" WA

[Young, Lee, Fabian, Reynolds et al., ApJ, 2005]

Current paradigm

- Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
- Full GR-MHD simulations of non-radiative disks possible
- Radiatively-efficient disks
 - Gross properties amenable to semi-analytic modeling
 - Novikov & Thorne (1974)
 - Geom. thin, efficient disk
 - Material plunges into BH ballistically once within the innermost stable circular orbit

Hirose et al. (2004); also see Koide et al. (2000), McKinney (2005), Komissarov (2005). 15

Current paradigm

- Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
- Full GR-MHD simulations of non-radiative disks possible

Radiatively-efficient disks

- Gross properties amenable to semi-analytic modeling
- Novikov & Thorne (1974)
 - Geom. thin, efficient disk
 - Material plunges into BH ballistically once within the innermost stable circular orbit

$$r_{\rm in} \to \frac{6GM}{c^2} \qquad a=0$$

$$r_{\rm in} o \frac{GM}{c^2} \qquad a o 1$$

- Current paradigm
 - Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
 - Full GR-MHD simulations of <u>non-radiative</u> disks possible
- Radiatively-efficient disks
 - Gross properties amenable to semi-analytic modeling
 - Novikov & Thorne (1974)
 - Geom. thin, efficient disk
 - Material plunges into BH ballistically once within the innermost stable circular orbit

- Current paradigm
 - Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
 - Full GR-MHD simulations of <u>non-radiative</u> disks possible
- Radiatively-efficient disks
 - Gross properties amenable to semi-analytic modeling
 - Novikov & Thorne (1974)
 - Geom. thin, efficient disk
 - Material plunges into BH ballistically once within the innermost stable circular orbit

Deep Minimum of MCG-6-30-15 XMM (Reynolds et al. 2004)

Iron lines broader than predicted from NT disk ⇒ Irradiation more centrally concentrated than NT prediction

Underlying disk is NT-like, but X-ray irradiation does not track local dissipation (need light bending) Irradiation tracks a dissipation that is much more centrally concentrated than NT law

Gravitational light bending?

- Suppose X-ray source is base of a jet?
 - X-rays will be gravitationally focused onto central parts of disk
 - Can produce very centrally concentrated irradiation pattern!
 - Data suggest h~few GM/c²

- Geometry first discussed in Fe-K line context by Marttochia & Matt (1996)
 Applied to ASCA data for MCG-6-30-15 by
- Reynolds & Begelman (1997)
- Applied to XMM data for MCG-6-30-15 by Minuitti & Fabian (2004)

Iron lines broader than predicted from NT disk ⇒ Irradiation more centrally concentrated than NT prediction

Underlying disk is NT-like, but X-ray irradiation does not track local dissipation (need light bending) Irradiation tracks a dissipation that is much more centrally concentrated than NT law

- Recent work suggests importance of "torqued accretion disks"
 - Magnetic fields may lead to continued extraction of energy/ang-momentum of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk
- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.

Analytic: Gammie (1999), Krolik (1999), Li (2000), Agol & Krolik (2000), Garofalo & Reynolds (2005)

Numerical: Hawley (2000), Hawley & Krolik (2001), Armitage, Reynolds & Chiang (2001), Reynolds & Armitage (2003)

- Recent work suggests importance of "torqued accretion disks"
 - Magnetic fields may lead to continued extraction of energy/ang-momentum of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk
- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.

Deep Minimum of MCG-6-30-15 XMM (Reynolds et al. 2004)

- Recent work suggests importance of "torqued accretion disks"
 - Magnetic fields may lead to continued extraction of energy/ang-momentum of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk
- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.

Deep Minimum of MCG-6-30-15 XMM (Reynolds et al. 2004)

BLACK HOLE SPIN

- Importance of spin
 - Large energy store (upto 29% of rest mass energy)
 - Spin may retain memory of black hole formation
 - First step in testing Kerr metric
- Diagnose spin through its effects on the accretion disk structure
 - Major effect change in the location of the innermost stable circular orbit (ISCO)

If we assume no X-ray reflection from within the ISCO...

- For progressively more rapidly rotating BHs...
 - ISCO moves inwards to a higher gravitational redshift region
 - For given inclination, maximum redshift of iron line increases
- Applied to long (350ks) XMM dataset for MCG-6
 - Data strongly prefers rapidly spinning BH solution
 - $a = 0.95 \pm 0.04$

Brenneman & Reynolds, in prep

If we assume no X-ray reflection from within the ISCO...

- For progressively more rapidly rotating BHs...
 - ISCO moves inwards to a higher gravitational redshift region
 - For given inclination, maximum redshift of iron line increases
- Applied to long (350ks) XMM dataset for MCG-6
 - Data strongly prefers rapidly spinning BH solution
 - $-a = 0.95 \pm 0.04$

Brenneman & Reynolds, in prep

• Constellation-X

- Major component of NASA's Beyond Einstein program
- Imaging spectroscopy with superior spectral resolution and collecting area
- Allows study of short-term broad iron line variability
 - Dynamical timescale variability ⇒ trace orbits of distinct structures in disk
 - Light crossing timescale variability ⇒ follow echos of X-ray flares across disk

Constellation-X

• Constellation-X

- Major component of NASA's Beyond Einstein program
- Imaging spectroscopy with superior resolution and collecting area
- Allows study of short-term broad iron line variability
 - Dynamical timescale variability ⇒ trace orbits of distinct structures in disk
 - Light crossing timescale variability ⇒ follow echos of X-ray flares across disk

Armitage & Reynolds (2003)

- Constellation-X
 - Major component of NASA's Beyond Einstein program
 - Imaging spectroscopy with superior resolution and collecting area
- Allows study of short-term broad iron line variability
 - Dynamical timescale variability ⇒ trace orbits of distinct structures in disk
 - Light crossing timescale variability ⇒ follow echos of X-ray flares across disk

Armitage & Reynolds (2003)

Similar features from <u>outer</u> disk already hinted at by XMM-Newton NGC3516 (Iwasawa et al. 2004) & Mrk 766 (Turner et al. 2005)

Constellation-X

- Major component of NASA's Beyond Einstein program
- Imaging spectroscopy with superior resolution and collecting area
- Allows study of short-term broad iron line variability
 - Dynamical timescale variability ⇒ trace orbits of distinct structures in disk
 - Light crossing timescale variability ⇒ follow echos of X-ray flares across disk

II : MASSIVE BLACK HOLES & MASSIVE GALAXY FORMATION

- Galaxy luminosity function
 - Suppressed at high and low luminosity end compared with simply ΛCDM predictions
 - High-L suppression must be more efficient that star formation
- Do AGN suppress highend of galaxy LF?

Benson et al. (2003)

Cluster cooling flows Massive galaxy suppression in action?

How can AGN jets heat ICM isotropically?

Cocoon structure; Scheuer (1974)

Can heat isotropically by either shock heating or dissipation of sound waves 2-d hydro simulations Reynolds et al. (2002)

Chandra observations of cooling-core clusters

Cygnus-A Smith et al. (2002)

Perseus-A Fabian et al. (2000)

Synopsis: Jet-blown cavities common "Ghost" cavities common Strong shocks elusive!

Hydra-A Nulsen et al. (2004)

Virgo/M87 Young et al. (2002)

Modeling the feedback loop

- Feedback model ⇒ average AGN heating balances ICM cooling
- Analysis of ICM cavities shows that kinetic power and cooling luminosity are indeed related
- Nature must modulate AGN fueling according to ICM properties
- First attempts to model this...
 - Ideal hydro model of jet/ICM interaction
 - Jet power proportional to cooling flow rate
 - FAIL to produce successful balance

Birzan et al. (2004)

Does the "feedback" loop work?

- Feedback model ⇒ average AGN heating balances ICM cooling
- Analysis of ICM cavities shows that kinetic power and cooling luminosity are indeed related
- Nature must modulate AGN fueling according to ICM properties
- First attempts to model this...
 - Ideal hydro model of jet/ICM interaction
 - Jet power proportional to cooling flow rate
 - FAIL to produce successful balance

Delayed fueling scenario Vernaleo & Reynolds, submitted

Runaway cooling in the equatorial regions

Does the "feedback" loop work?

- Feedback model ⇒ average AGN heating balances ICM cooling
- Analysis of ICM cavities shows that kinetic power and cooling luminosity are indeed related
- Nature must modulate AGN fueling according to ICM properties
- First attempts to model this...
 - Ideal hydro model of jet/ICM interaction
 - Jet power proportional to cooling flow rate
 - FAILS to produce successful balance

Delayed fueling scenario Vernaleo & Reynolds, submitted

What ingredients are missing from the feedback model?

- MHD and Plasma transport processes
 - Thermal conduction and Viscosity
 - Dissipation of wave energy
 - New instabilities of the ICM atmosphere
- Precession of the jet axis
 - Need to be quasi-isotropic on cooling timescale (few×10⁸ yr)
- Dissipation of energy stored in global ICM modes?

Evidence for dissipation of sounds waves by thermal conduction (see Fabian, Reynolds et al. 2005)

What ingredients are missing from the feedback model?

- MHD and Plasma transport processes
 - Thermal conduction and Viscosity
 - Dissipation of wave energy
 - New instabilities of the ICM atmosphere
- Precession of the jet axis
 - Need to be quasi-isotropic on cooling timescale (few×10⁸ yr)
- Dissipation of energy stored in global ICM modes?

Reynolds, Brenneman & Stocke (2005) 41

Conclusions

- New era of black hole research
 - Detailed studies of black hole physics and relativistic accretion
 - Impact of black holes on galactic scale structure
- Strong gravity studies with XMM and Chandra
 - Robust signatures of strong gravity exist
 - Measurements of black hole spin and signs of interesting spinrelated astrophysics
 - Constellation-X and LISA will bring tremendously exciting future
- Jetted AGN and cluster cooling flows
 - Puzzles; how are ICM cores being heated?
 - Need for more physics

The End

Iron line variability

- Recent work suggests importance of "torqued accretion disks"
 - Magnetic fields may lead to continued extraction of energy/ang-mtm of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk
- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.

Armitage, Reynolds & Chiang (2001) Reynolds & Armitage (2001)

The way forward

• Better modeling

Simulated Astro-E2 XRS data Abell 4059 (z=0.049)

- More physics (MHD, plasma processes)
- Put in cosmological setting
- Better data
 - More deep Chandra observations
 - Direct kinematics from high-resolution X-ray spectroscopy (rebuild of Astro-E2?, Constellation-X)