

Constellation-X

Ann Hornschemeier (NASA/GSFC)

Jay Bookbinder (SAO)

Jean Grady (NASA/GSFC)

Harvey Tananbaum (SAO)

BEPAC Presentation Newport Beach: January 30, 2007

Nicholas White (NASA/GSFC)

The Constellation X-ray Observatory

Introduction of Our Team Members:

- Jean Grady Project Manager
- Nick White Project Scientist
- Rob Petre Deputy Project Scientist
- Ann Hornschemeier Deputy Project Scientist
- Rich Kelley Instrument Scientist
- Gabe Karpati Mission Systems Engineer
- Jean Cottam Instrument Scientist
- Richard Mushotzky Science
- Harvey Tananbaum Facility Science Team Chair
- Jay Bookbinder Mission Scientist
- Bob Rasche SAO Project Manager

Agenda

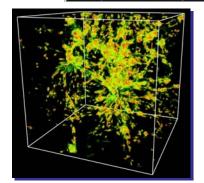
Ann Hornschemeier – Science	Q1, 4, 6	15 min
Jay Bookbinder – Mission Approach and Instrumentation	Q19, 23, 2, 5, 7, 12, 16, 13, 8, 35, 36, 37	20 min
Jean Grady – Observatory and Spacecraft, Schedule, Cost, and Risk	Q21,31, 20, 23, 25, 29, 26, 27, 28, 30, 32, 33, 39, 22	20 min
Harvey Tananbaum – Science Risks, Trades, Descopes, Data Analysis	Q10, 3, 9, 24, 14	5 min
Nick White – Scientific Reach	Q18	5 min
Questions covered in written response, but not addressed here	Q11, 15, 17, 34, 38	

Ann Hornschemeier – Science	Q1, 4, 6	15 min
Jay Bookbinder – Mission Approach and Instrumentation	Q19, 23, 2, 5, 7, 12, 16, 13, 8, 35, 36, 37	20 min
Jean Grady – Observatory and Spacecraft, Schedule, Cost, and Risk	Q21,31, 20, 23, 25, 29, 26, 27, 28, 30, 32, 33, 39, 22	20 min
Harvey Tananbaum – Science Risks, Trades, Descopes, Data Analysis	Q10, 3, 9, 24, 14	5 min
Nick White - Scientific Reach	Q18	5 min

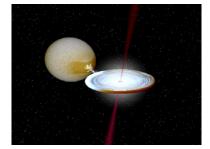
Driving Science Objectives

Black Holes

 Use black holes to test General Relativity and measure black hole spin


Dark Energy (and Dark Matter)

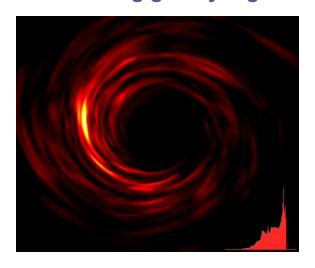
 Use Galaxy Clusters to provide factor of ten improvement in key Dark Energy (DE) parameters

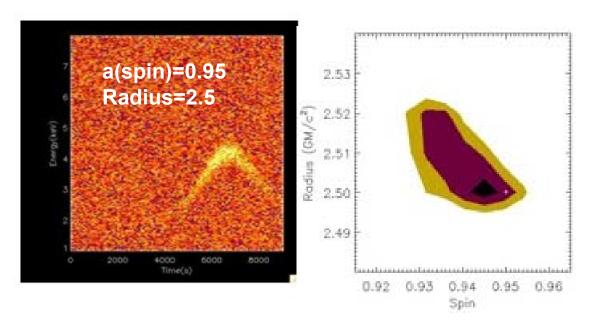

Missing Baryons

 Unambiguous detection of the hot phase of the Warm-Hot Intergalactic Medium (WHIM) at z>0

Neutron Star Equation of State

 Measuring the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultradense matter

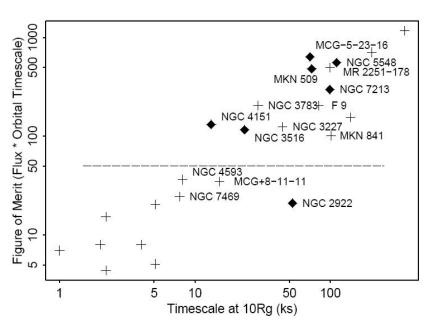




Black Holes:

Use black holes to test General Relativity (GR) and measure black hole spin

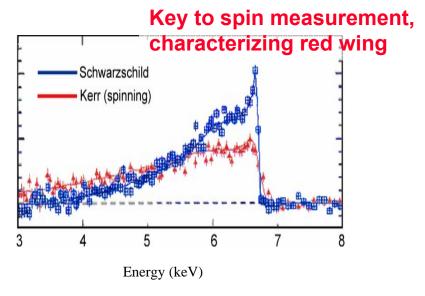
- Con-X will probe close to the event horizon with 100× better sensitivity to:
 - Follow dynamics of individual "hot spots" to determine spin as function of radius in disk.
 - Spin measurements vs radius provide a powerful consistency check of GR in the strong gravity regime.



Detectability depends on X-ray flux, line intensity, and orbital timescale

Key to GR tests with hot spots: large collecting area and good spectral resolving power

Black Holes: Measurements



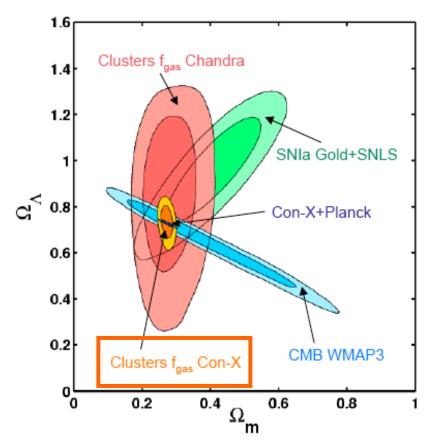
ASCA X-ray sample of AGN

Time-variable Fe K measurements

For 6000 cm² at 6 keV, ~10 targets
 meet required Figure of Merit > 50

Detailed characterization of broad FeK line to measure spin for several hundred AGN over a range of luminosity and redshift

Continuum Is Key For Spin Measurements:

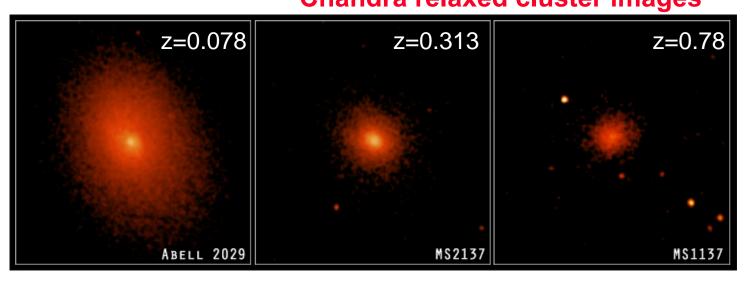

- Require 150 cm² at 10-40 keV
- Spectral resolving power R=2400 required to resolve warm absorber (permits continuum to be measured)

Dark Energy:

Improving the constraints on the key Dark Energy (DE)

parameters by a factor of ten

Con-X will provide DE parameter constraints competitive with and complementary to other methods

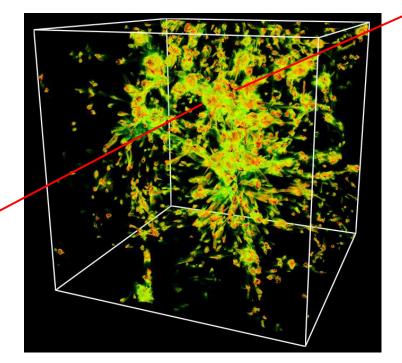


- Largest gravitationally bound structures in the Universe, most of the normal, baryonic matter lies in the hot X-ray emitting gas (10⁶ - 10⁸ K)
- Measurement #1 (Geometric):
 Use clusters to measure distance based on gas mass fraction.
- Measurement #2 (Growth of structure): Use clusters as probe of density perturbation growth in the Universe via cluster mass function vs z measurement (samples from X-ray & submillimeter surveys)

Dark Energy:

Two measurements, identical performance requirements Chandra relaxed cluster images

- High collecting area enables large, efficient snapshot survey (~1000 targets) followed by deeper spectroscopic observations of relaxed clusters
- FOV of 5' x 5' needed for measuring surface brightness profiles of these spatially-extended targets
- R~2400 at 6 keV required in cluster centers to resolve e.g., turbulence from non-gravitational heating, moderate spectral resolution over rest of FOV enables density/temperature diagnostics

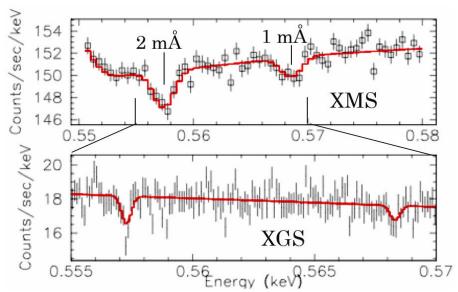

Missing Baryons:

Unambiguous detection of the hot phase of the Warm-Hot Intergalactic Medium (WHIM) at z>0

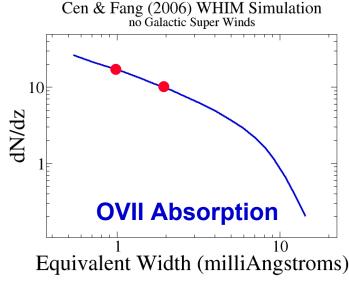
- \sim 60% of the baryonic matter at z < 2 is largely undetected.
- Theoretical simulations agree that it resides in filaments of hot (10⁵ -10^{7.5} K) gas

 Filaments of this "cosmic web" may be observed in absorption against bright background AGN

Key features are OVII and OVIII (1s-2p transition at 574 eV, $Ly\alpha$ line at 654 eV)



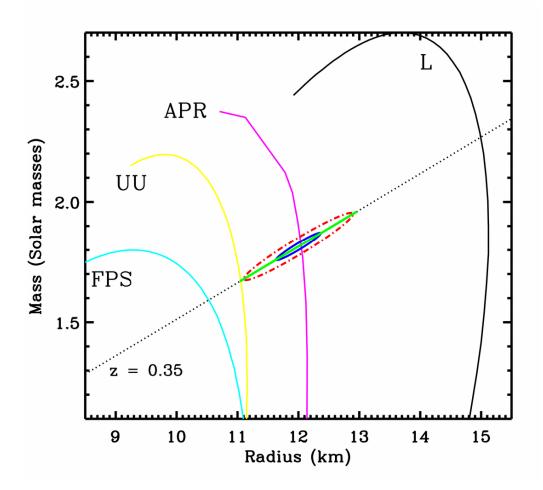
Background AGN


Missing Baryons:

Measuring absorption lines against background AGN

- Sensitivity for WHIM measurements can be characterized in terms of equivalent width of relevant absorption features
- Benchmark measurement: 30 brightest AGN in ROSAT survey (typical redshifts z~0.2-0.3)

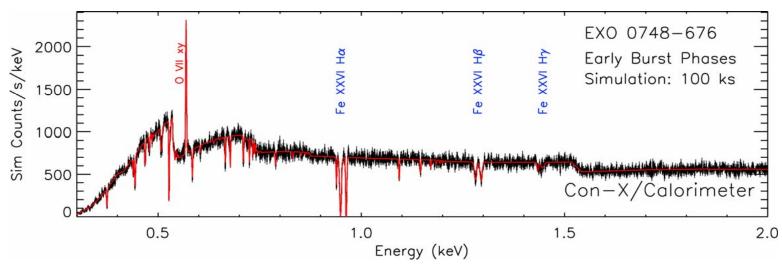
- 1.0 mÅ filament at z=0.01
 2.0 mÅ filament at z=0.03
- Predicted filament properties as a function of z



- For ∆z = 0.3, to obtain dN/dz~10, need 1 mÅ sensitivity
- Independent measurements with the XMS and XGS confirm detection.

Neutron Stars:

Measuring the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultra-dense matter



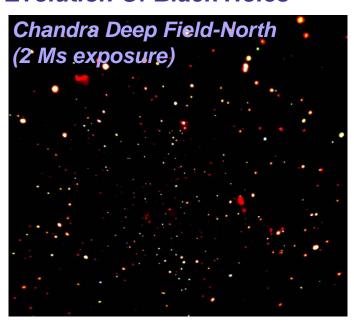
- Neutron stars contain the densest states of matter in the universe.
- The nuclear physics that governs the interactions between constituent particles predicts mass/radius relations.
- X-ray bursts from LMXBs provide ideal conditions for measuring the Equation of State for neutron stars.
- Con-X will provide high S/N atmospheric absorption spectra, and measure burst oscillations for a large sample of neutron stars.

Neutron Star EOS:

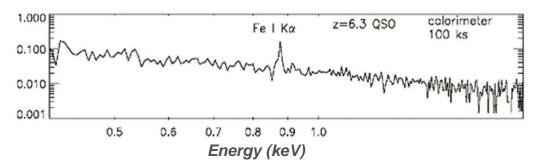
Two measurement techniques: atmospheric absorption and burst oscillations

Measurement #1 – Absorption spectroscopy:

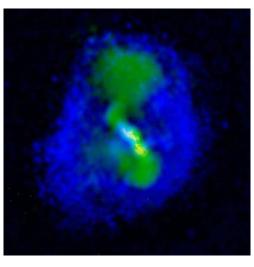
- Absorption spectra provide a direct measure of gravitational redshift at surface of the star (z ∞ M/R).
- The measured widths of the lines constrains the NS radius to 5-10% (compare to best present constraints: 9.5-15 km for EXO 0748-676)


Measurement #2 – Burst oscillations:

 Pulse shapes of burst oscillations can provide an independent measure of the mass and radius to a few percent. Requires 100 microsec timing and ability to handle count rates up to 0.25 Crab.



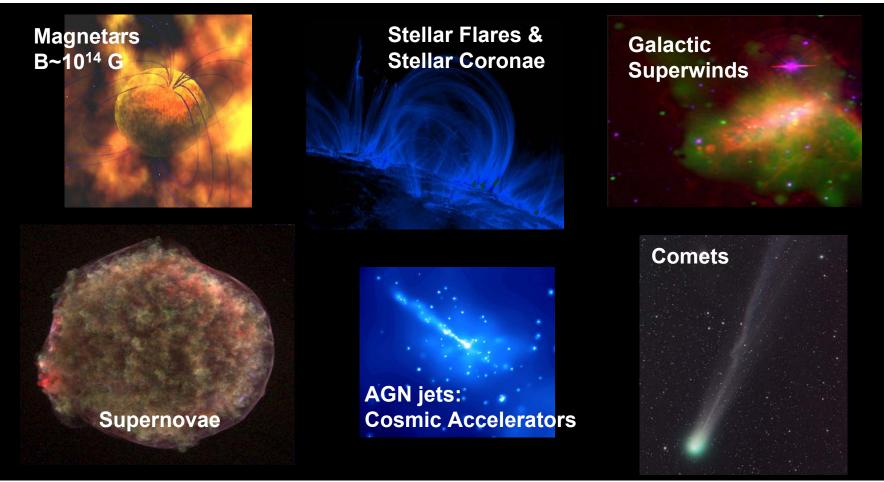
Beyond the 4 Driving Objectives...


Evolution Of Black Holes

As follow-on to Chandra X-ray Observatory, Con-X will gather high-resolution X-ray spectra of the elusive optically faint X-ray sources

Cosmic Feedback

Wise et al. 2006 Hydra A


Large scale-structure simulations require AGN feedback (via jets and/or winds) to regulate the growth of galaxies

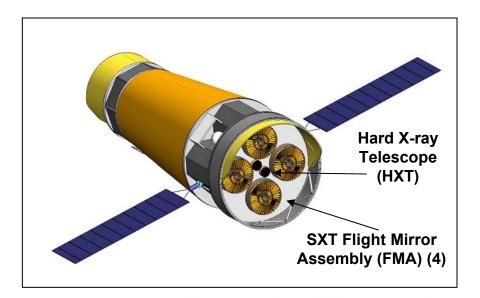
- Spatially resolved X-ray spectroscopy required to probe turbulence in cluster cores showing radio bubbles (jets)
- High spectral resolving power required to determine mass outflows in quasars with winds

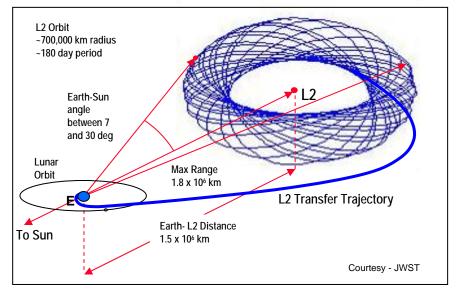
Observatory Science

- Con-X enables a large range of science
- A broad scientific community will utilize this facility

Science Objectives Flow Into Key Performance Requirements

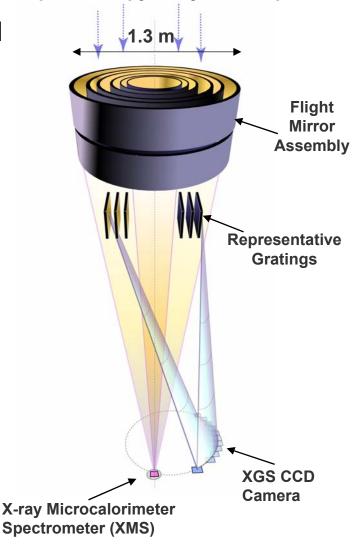
Effective Area:	15,000 cm ² @1.25 keV 6,000 cm ² @6 keV 150 cm ² @40 keV
Bandpass:	0.3 – 40 keV
Spectral Resolution:	1250 @0.3 – 1 keV
	2400 @6 keV
Angular Resolution	15 arcsec 0.3 - 7 keV
	30 arcsec 7.0 - 40 keV
Field of View	5 x 5 arcmin




Ann Hornschemeier – Science	Q1, 4, 6	15 min
Jay Bookbinder – Mission Approach and Instrumentation	Q19, 23, 2, 5, 7, 12, 16, 13, 8, 35, 36, 37	20 min
Jean Grady – Observatory and Spacecraft, Schedule, Cost, and Risk	Q21,31, 20, 23, 25, 29, 26, 27, 28, 30, 32, 33, 39, 22	20 min
Harvey Tananbaum – Science Risks, Trades, Descopes, Data Analysis	Q10, 3, 9, 24, 14	5 min
Nick White – Scientific Reach	Q18	5 min

Mission Approach

- High throughput achieved with 4 telescope systems on a single satellite
 - Complemented by low and high energy instruments
- L2 Orbit; 700,000 km radius halo orbit
 - High operational efficiency
 - Uninterrupted viewing
 - Stable temperature
- Field of regard allows full sky coverage every 180 days
 - Pitch: +/- 20° off Sunline
 - Yaw: +/- 180°
 - Roll: +/- 20° off Sunline
- 5 year life; 10 years on consumables


Q19, 23

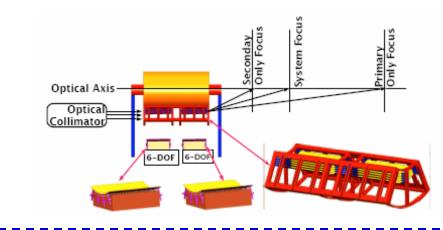
Mission Implementation

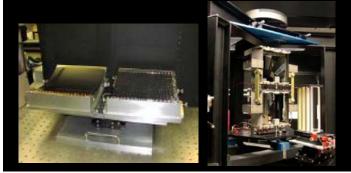
- To meet the requirements, our technical implementation consists of:
 - 4 SXTs each consisting of a Flight Mirror Assembly (FMA) and a X-ray Microcalorimeter Spectrometer (XMS)
 - Covers the bandpass from 0.6 to 10 keV
 - Two additional systems extend the bandpass:
 - X-ray Grating Spectrometer (XGS) dispersive from 0.3 to 1 keV (included in one or two SXT's)
 - Hard X-ray Telescope (HXT) nondispersive from 6 to 40 keV
- Instruments operate simultaneously:
 - Power, telemetry, and other resources sized accordingly

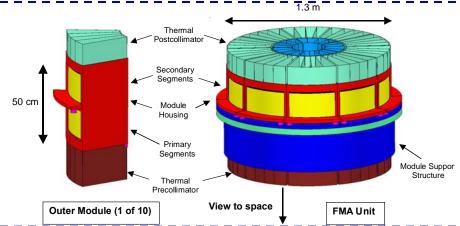
4 Spectroscopy X-ray Telescopes

Q2, 19, 5

Flight Mirror Assembly




Mirror segment on a precisely figured mandrel


Angular Resolution Req't: 9.9 arcsec HPD

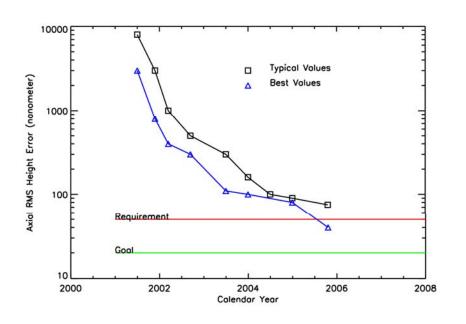
X-ray mirror

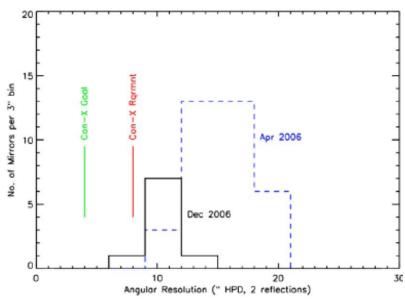
Passive (L) and active (R) alignment approaches – Not metrology limited

Suzaku flight mirror (40 cm diameter)

Angular Resolution Req't: 12.5 arcsec HPD

Q7, 12


Bonding


Alignment

Assembly

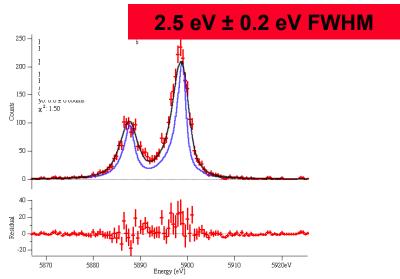
Mirror Segment Fabrication Progress

- RMS amplitude has improved to ~ required level
- Angular resolution improved by ~ 50% within year to within ~ 30% of requirements

X-ray Microcalorimeter Spectrometer (XMS)

Suzaku X-ray calorimeter array achieved 7 eV resolution on orbit

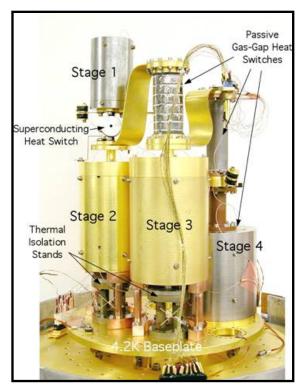
XMS key requirements:


Bandpass: 0.6 to 10 keV

- Field of view:
 - 5 arcmin x 5 arcmin via extended position sensitive microcalorimeters
- Spectral resolving power:
 - 2.5 eV in core array (2.5 x 2.5 arcmin)
 - 8 eV for outer array
- Transition Edge Sensor (TES), NTD/Ge and magnetic microcalorimeter technologies under development

8 x8 development Transition Edge Sensor array: 250 μm pixels

Con-X test arrays achieve 2.5 eV at 6 keV


Q7, 12

BEPAC Jan. 30 page - 22

ADR and Cryocooler

- XMS supporting technologies:
 - Key requirements:
 - No cryogens
 - Continuous cooling for array to ~50mk
 - Adiabatic Demagnetization Refrigerator (ADR)
 - Salt pills, magnets, assembly and manufacture same design as Suzaku XRS
 - Cryocooler
 - Cooling at ~6K
 - Advanced Cryocooler Technology Development Program (ACTDP) completed in 2005 for JWST, TPF and Con-X
 - Three different technologies can meet Con-X requirements

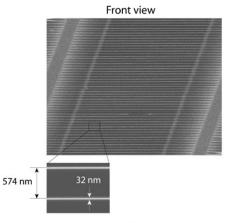
Technology Demonstration Continuous ADR for Con-X

Operating T ~35mK achieved

Q7, 12

X-ray Grating Spectrometer (XGS)

XGS key requirements:


- Effective area >1000 cm² from 0.3 to 1 keV
- Spectral resolving power 1250 over full band

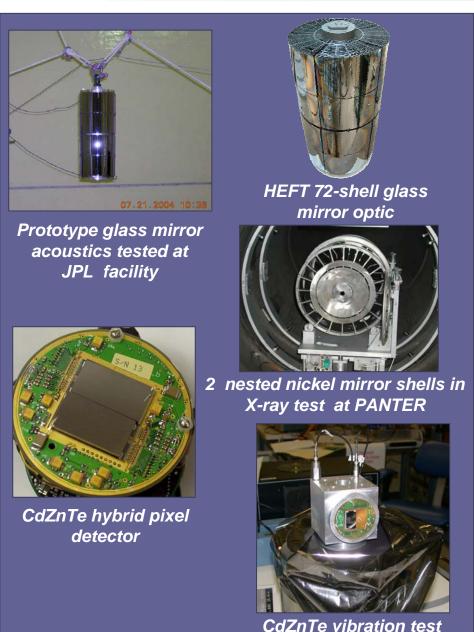
Two concepts under study for the grating arrays:

- Transmission grating
- Off-plane reflection grating
- Heritage from Chandra, XMM, and sounding rockets

CCD detectors:

- Back-illuminated (high QE below 1 keV),
- Fast readout with thin optical blocking filters
- Heritage from Chandra, XMM, Suzaku

Electron micrograph of blazed transmission grating


Three mounted off-plane gratings for sounding rocket

Q7, 12

Hard X-ray Telescope (HXT)

- HXT key requirements:
 - Effective area of 150 cm² from 6 to 40 keV
 - Spectral resolving power 10 over full band
 - 30 arcsec HPD
- Two potential technologies for the mirrors
 - Nickel Shell & Glass Segment
 - Highly nested optics with multilayer coatings
 - X-ray tests show 30 40 arcsec performance
 - Heritage from XMM, Swift, HEFT, HERO, InFocus
- CdZnTe detectors well understood from balloon flights (HERO, HEFT, InFocus)

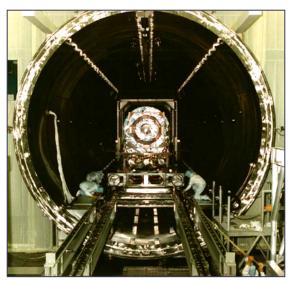
Q7, 12

BEPAC Jan. 30 page - 25

Technology Summary and Plans

- Mirror and instrument technologies are well on the way toward meeting requirements for Con-X
- Key upcoming technology demonstrations:
 - Fabrication of mirror segments with 1 kg/m² areal density meeting required angular resolution – late 2007
 - Demonstrate mirror in flight-like mount meeting 15 arcsec angular resolution, environmentally tested – 2009
 - 32 x 32 pixel "core" microcalorimeter demo array meeting requirements – 2008
 - Full 5 x 5 arcmin microcalorimeter focal plane demonstration – 2009
- Technology development schedules provided in response to BEPAC RFI
- Engineering units anticipated for Flight Mirror Assembly and Instruments post-technology development

Operations Modes and Data Volumes


- Instrument operations are inherently simple
 - Detectors view the same source
 - Minimal number of operational modes
 - Science operations are typically a single mode
 - Engineering modes include calibrations, s/w loads, diagnostics etc.
- Instrument data rates and volumes (over 5 year mission)

Instrument	Data Rate (Ave/Peak)	Volume
XMS	38/300 kbps	7.4 TB
XGS	87/867 kpbs	17.6 TB
НХТ	17/150 kbps	3.4 TB
TOTAL	142/1317 kbps	28.6 TB

Calibration

- Calibration philosophy and structure based on Chandra
- Bottoms-up calibration
 - Sub-system level calibrations constrain physical models of telescope system
- Ground calibrations utilizes existing facilities
 - XRCF beam can fully illuminate the FMA aperture
- Flight calibrations
 - Combination of well-known celestial and on-board sources
 - Cross-calibration with other missions

XRCF Main Chamber

X-ray Calibration Facility (XRCF) at MSFC

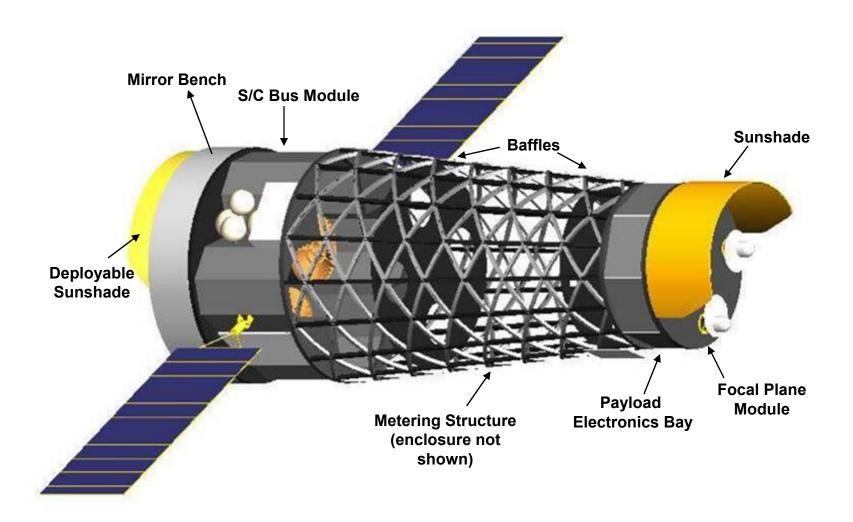
Q13

Mission Operations

- Constellation-X Operations Concept is well developed:
 - Based on the Chandra model
- Constellation-X will be a facility class observatory:
 - Programs selected via competitive Peer Review
- Constellation-X operates as a queue-scheduled observatory:
 - Pointing at selected targets in the most time efficient way consistent with science and observatory constraints
 - No unusual mission or operational constraints
 - No unusual communication requirements
- Time on a target (pointings):
 - 10³ to 10⁶ sec; observations may have several pointing intervals

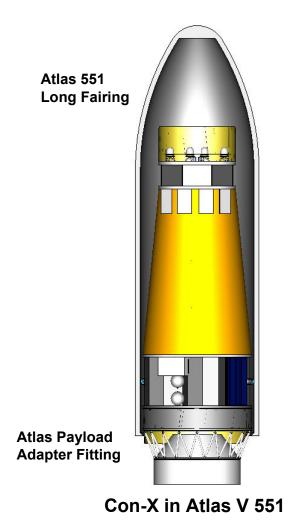
Panoramic view of the Chandra Operations Center

Q35, 36, 37


BEPAC Jan. 30 page - 29

Ann Hornschemeier – Science	Q1, 4, 6	15 min
Jay Bookbinder – Mission Approach and Instrumentation	Q19, 23, 2, 5, 7, 12, 16, 13, 8, 35, 36, 37	20 min
Jean Grady – Observatory and Spacecraft, Schedule, Cost, and Risk	Q21,31, 20, 23, 25, 29, 26, 27, 28, 30, 32, 33, 39, 22	20 min
Harvey Tananbaum – Science Risks, Trades, Descopes, Data Analysis	Q10, 3, 9, 24, 14	5 min
Nick White – Scientific Reach	Q18	5 min
Questions covered in written response, but not addressed here	Q11, 15, 17, 34, 38	

Observatory Configuration



Q21, 31

BEPAC Jan. 30 page - 31

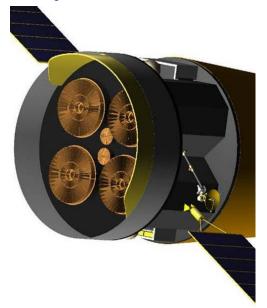
Launch and Mass Summary

Payload Mass			
	Estimate (kg)	Estimate (kg)	Allocation (kg)
Flight Mirror Assembly	1572.0	30%	2043.6
X-ray Microcalorimeter Spectrometer	708.0	30%	920.4
X-ray Grating Spectrometer	100.0	30%	130.0
Hard X-ray Telescope	100.0	30%	130.0
Miscellaneous Payload Items	35.6	30%	46.3
Payload Total	2515.6	30%	3270.3

S/C Bus Mass			
	Estimate (kg)	Contingency	Allocation (kg)
C&DH	92.4	30%	120.1
Attitude Control	68.0	30%	88.4
Communications	30.0	30%	39.0
Mechanisms	146.6	30%	190.6
Structure	981.2	30%	1275.6
Power	104.0	30%	135.2
Propulsion	48.0	30%	62.4
Thermal	186.3	30%	242.1
Harness	188.0	30%	244.4
S/C Bus Total	1844.5	30%	2397.8

Launch Mass Summary			
	Estimate (kg)	Contingency	Allocation (kg)
Payload Total	2515.6	30%	3270.3
S/C Bus Total	1844.5	30%	2397.8
Separation System	164.8	30%	214.3
Observatory Dry Mass	4524.9	30%	5882.3
Propellant Mass	257.4	30%	334.6
Observatory Wet Mass	4782	30%	6217.0
Throw Mass: 6305 kg	Pi	roject Margin	88.0

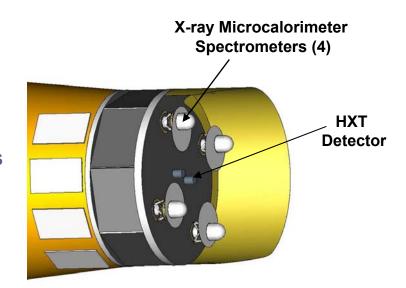
30% overall contingency


6217 kg Wet Mass

> ,88 kg Margin

Q20, 21, 23, 25

Payload Accommodations



Mirror Accommodations

- Four 1.3 m dia SXT FMA's and 1 2 HXT Mirrors co-aligned on Mirror Bench
- Sunshade keeps sun light off mirrors
- Heaters maintain mirrors at room temperature
- Mirror covers provide protection during launch and orbit transfer

Detector Accommodations

- X-ray Microcalorimeter Spectrometers (XMS),
 X-ray Grating focal plane camera (not shown)
 and HXT detectors mount in Focal Plane
 Module
- Payload Electronics Bay for warm electronics and XMS cryocooler
- Sunshade and cold view to space support
 <100K on XMS "cryogen-less" cryostat shell
- Loop heat pipe takes heat from cryocooler

Q21, 31BEPAC Jan. 30 page - 33

Spacecraft Bus Characteristics

Mechanical

Modular design supports parallel integration and test activities

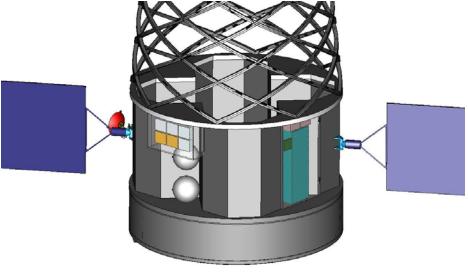
Thermal

 Traditional thermal control (blankets, heaters, thermostats)

Propulsion

Sized for maximum throw mass for 10 years

Attitude Control


- Pointing knowledge: 5, 5, 20 arcsec (3 sigma)
- Slew of 60 degrees completed in 1 hour

Electrical Power

22 m² Solar Array provides 4200 W
 End of Life (10 yrs)

Command and Data Handling

- Data rate: 150 kbps (avg);1325 kbps (peak)
- Two days storage capacity (144 Gbit)

S/C Bus Module

Communications

- High gain antenna to DSN 34 m
- 30 minute daily contacts, Ka-band for science

Mission Assurance

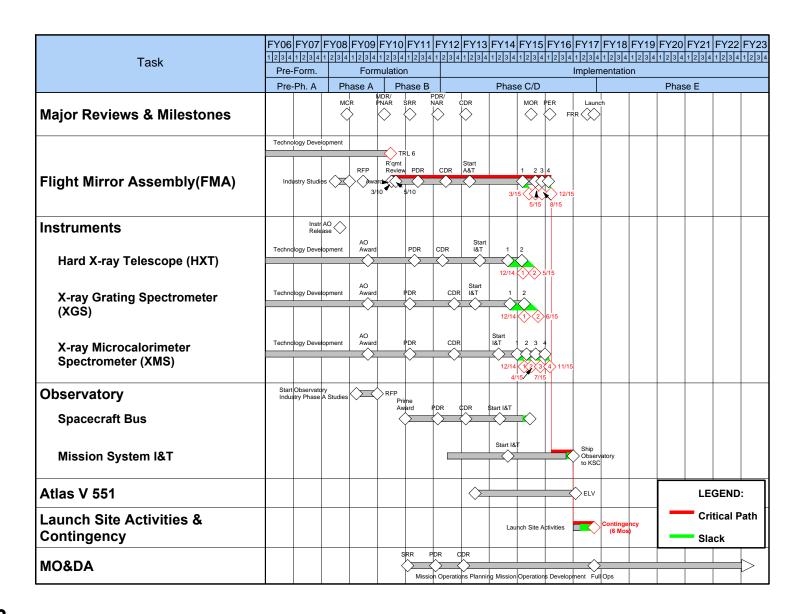
 High level of redundancy for "Class B" mission

Spacecraft Summary

- Overall spacecraft system requirements well within state-ofthe-art
 - All spacecraft requirements can be met with existing technology, no technology development required
 - Direct spaceflight heritage on all components
- S/C Risks are very low to low
 - Deployables are highest risk
 - Contamination control also warrants attention
- Spacecraft trades planned for Phase A will further refine and optimize implementation concept

Project Organization

- Project Management
 - NASA/GSFC
- Science Team
 - GSFC, SAO, Facility Science Team/Science Working Group
- Mission Systems Engineering
 - Led by GSFC
 - Supported by Smithsonian Astrophysical Observatory (SAO),
 Observatory Prime, FMA and instrument developers
- Instruments:
 - Selected thru Announcement of Opportunity (AO)
- Flight Mirror Assembly
 - Selected thru Request for Proposal (RFP)
- Observatory Prime
 - Selected thru RFP
- Mission Operation and Data Analysis
 - SAO



Schedules

- Launch June 2017
- Flight Mirror Assembly (FMA) and Observatory industry studies with multiple potential partners precede flight solicitation
- FMA Technology development continues through technology transfer to industry for flight build (award in March 2010)
- Other Key Competitive Awards:
 - Instruments: May 2009
 - Observatory Prime: October 2010
- Schedule critical path runs through the SXT Flight Mirror Assembly
- Total schedule reserve on critical path is 9 months
- Schedules for Flight Mirror Assembly, each instrument, and technology development efforts provided in RFI response

Top Level Mission Schedule

Q33

Cost

- Mission total: \$2.16B Real Year (\$1.74B in FY07 dollars)
 - End-to-end including prior funding (\$51M) and 5 years on-orbit operations
- Method of estimation
 - Grass roots, supported by PRICE-H on hardware elements
 - Folds in Chandra and other spaceflight experience
 - Launch vehicle cost estimate provided by KSC
- Modest ramp-up assumed in FY08
 - Technology development
 - Prepare for instrument AO, industry studies
- Budget Reserves
 - 20% in FY09, 25% in Phase B
 - 30% on Phase C/D (exclusive of launch vehicle)
 - 5% on Phase E

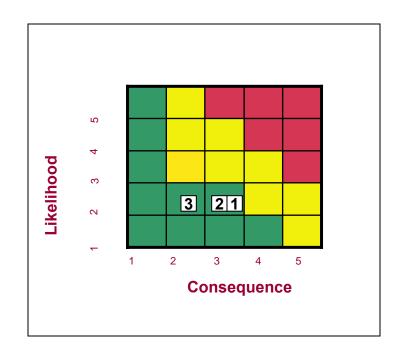
Cost Summary

	Pre)-A	Phas	se A	Phas	se B			Phase	e C/D				Ph	ase	E		Total	Total
\$M (RY)	Prior	FY07	FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15	FY16	FY17	FY18	FY19 F	Y20	FY21	FY22	RY	FY07
Concept Study	20.1	3.0	6.8	21.9														51.9	50.9
Project Management					5.2	6.1	7.3	6.8	7.1	6.9	6.3	3.7						49.4	40.7
Systems Engineering					5.9	7.0	7.4	7.6	7.5	7.2	6.4	3.2						52.1	43.1
Safety & MA					2.8	3.4	3.6	3.7	3.8	3.6	3.5	2.1						26.4	21.7
Technology Development	30.9	3.2	7.8	13.1	7.3													62.3	60.6
Science					6.6	7.8	9.3	10.8	14.7	19.8	19.6	21.7						110.4	88.3
Flight Mirror Assembly					14.3	37.1	38.7	40.8	40.4	15.3	0.9							187.5	158.4
XMS				3.7	16.0	18.1	33.0	41.6	32.7	25.5								170.6	143.4
XGS				1.7	13.0	15.1	19.2	17.9	14.8	4.9								86.6	74.0
HXT				1.0	5.8	7.3	8.7	7.7	4.2	1.5								36.1	31.1
Spacecraft					5.3	37.1	65.1	59.8	49.7	17.7								234.7	197.4
Gnd Data System Dev					0.6	0.8	3.6	4.5	7.1	11.9	12.8	13.3						54.6	42.7
MSI&T					0.0	0.0	1.4	2.2	4.2	17.3	28.8	18.0						71.8	55.1
Launch services					0.0	1.0	1.0	1.9	40.6	81.8	97.5	53.9						277.6	213.9
MO&DA					0.1	0.1	0.1	0.2	0.3	0.3	3.7	8.7	70.4	71.7	71.0	65.4	50.6	342.7	232.6
EPO					0.4	0.6	0.6	0.6	0.6	0.6	0.7	0.8	0.8	0.9	0.9	0.9	0.9	9.4	7.0
Reserves	0.0	0.0	1.5	8.3	20.8	35.1	59.4	61.3	56.1	39.7	24.8	14.3	3.6	3.6	3.6	3.3	2.6	338.0	278.4
Total	51.0	6.2	16.1	49.7	104.1	176.7	258.5	267.3	283.6	254.0	204.9	139.9	74.8	76.2	75.4	69.6	54.1	2162.1	1739.3

Q39BEPAC Jan. 30 page - 40

Overall Mission Risk Summary

#1 Technology development funding


- Impact: Could impact overall mission schedule
- Likelihood: Low, Consequence: Moderate
- Mitigation: Leverage alternate sources

#2 FMA Manufacture Schedule

- Impact: Could consume schedule reserve
- Likelihood: Low, Consequence: Moderate
- Mitigation: Early interaction with industry; consider parallel vendors

#3 Mission Mass growth

- Impact: May erode overall mass contingency
- Likelihood: Low, Consequence: Low
- Mitigation: Optimization, trade, vigilance

Ann Hornschemeier – Science	Q1, 4, 6	15 min
Jay Bookbinder – Mission Approach and Instrumentation	Q19, 23, 2, 5, 7, 12, 16, 13, 8, 35, 36, 37	20 min
Jean Grady – Observatory and Spacecraft, Schedule, Cost, and Risk	Q21,31, 20, 23, 25, 29, 26, 27, 28, 30, 32, 33, 39, 22	20 min
Harvey Tananbaum – Science Risks, Trades, Descopes, Data Analysis	Q10, 3, 9, 24, 14	5 min
Nick White – Scientific Reach	Q18	5 min

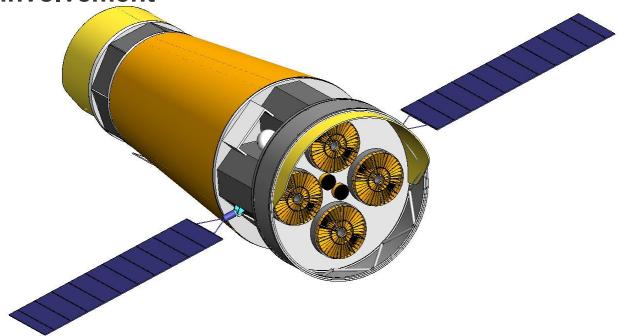
Three Primary Risks for Science and Instruments

- Risk #1: Unable to meet 15 arcsec (HPD) angular resolution
 - Dominated by mirrors. Demonstrated performance projects to 17 arcsec system. Technology development ongoing. Small impacts on limiting flux for new sources and maximum redshift of clusters for Dark Energy studies.
- Risk #2: Unable to extend XMS FOV to 5 x 5 arcmin

 Hybrid approach with 32 x 32 pixels for 2.5 arcmin

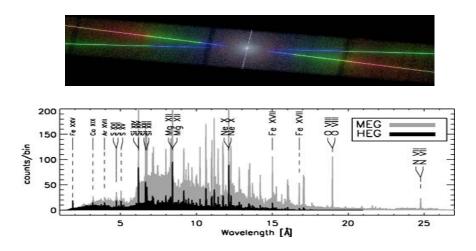
 core and position sensitive outer array. Consequence
 is multiple pointings for extended sources.
- Risk #3: Difficult to accommodate XGS and HXT

Range of XGS and HXT concepts under consideration. Integration might require modest increase of mass. Plan for early selection of all instruments via competitive AO.


Most Demanding Measurement and Descope Options

- Most Demanding Measurement
 - Iron line variability to test GR in strong gravity limit
 - Drives area at 6 keV
- Identified 3 Descope Options in written response
 - Removal of outer FMA shells most viable only option discussed here
 - Tailor to needed mass reductions outer 16 shells total 340 kg
 - Area loss at lower energies offset via longer exposure times
 - Fewer targets over mission lifetime
 - Minimal loss of area at 6 keV (<2%)
 - Minimizes impact on GR tests

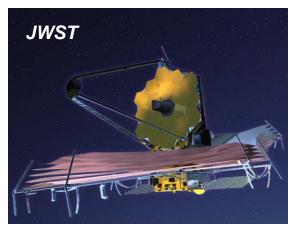
Identify and Describe Key Trades

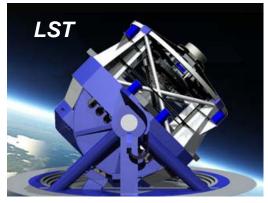

- Trades on orbit choice, orbit insertion, launch vehicle, optical bench, and number of SXTs completed – basis for implementation approach
- Trades on instrument details ongoing
- Trades on spacecraft underway and will increase with industry involvement

Complexity of Data Analysis

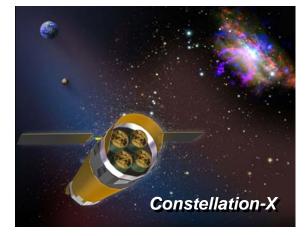
Constellation-X data very similar to Chandra, XMM, Suzaku

- Standard processing tools based on Chandra and Suzaku convert raw telemetry to event files: positions, energies, and times
- Analysis tools based on Chandra, XMM, Suzaku, RXTE, etc. generate images, spectra, and light curves
- Augment with updated atomic physics and plasma models for detailed spectral analysis and interpretation


Ann Hornschemeier – Science	Q1, 4, 6	15 min
Jay Bookbinder – Mission Approach and Instrumentation	Q19, 23, 2, 5, 7, 12, 16, 13, 8, 35, 36, 37	20 min
Jean Grady – Observatory and Spacecraft, Schedule, Cost, and Risk	Q21,31, 20, 23, 25, 29, 26, 27, 28, 30, 32, 33, 39, 22	20 min
Harvey Tananbaum – Science Risks, Trades, Descopes, Data Analysis	Q10, 3, 9, 24, 14	5 min
Nick White - Scientific Reach	Q18	5 min

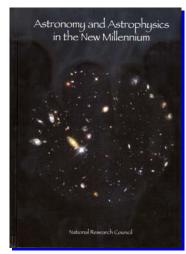

Compare the scientific reach of your mission with that of other planned space and ground-based missions

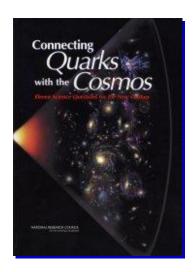
Sub-mm



IR

X-ray


Optical


The two order of magnitude increase in capability of Constellation-X is well matched to that of other large facilities planned for 2017

Science Reach – Previous Academy Reports

The Astronomy and Astrophysics in the New Millennium "decadal survey" set the stage for these future space and ground based "Great Observatories" and ranked Constellation-X as the second priority for large new space observatories

The Quarks to Cosmos science assessment and strategy for research at the intersection of Physics and Astronomy strongly endorsed the Constellation-X mission as "holding great promise for studying black holes and for testing Einstein's theory in new regimes"

A mid-course review in 2005 by the CAA endorsed these reports and found there was no need to "reexamine the AANM report or undertake an in depth mid-course review of the scientific goals or recommended priorities" ... "the committee is concerned that the careful balance that is crucial to the field be maintained"

Q18

BEPAC Jan. 30 page - 49

Science Reach per Dollar

 The ability of Constellation-X to address many timely topics results in a very high science yield per dollar

Topic	Percent Time	Cost
Black Hole	30%	\$649M
Dark Energy	18%	\$389M
Neutron Star Equation of State	14%	\$303M
Missing Baryon	11%	\$238M
Observatory Science	27%	\$584M
Total Mission Cost		\$2162M

- The cost of each topic as a fraction of the total Constellation-X mission cost is very competitive when compared to a stand alone dedicated mission
- This is the concept of a "Great Observatory" where a mission driven by focused science goals, at the same time provides a major increase in capability applicable across many science areas and in doing so engages a broad science community with a large discovery space

Constellation-X Addresses 8 of 11 Quarks to Cosmos Questions

Did Einstein have the last word on gravity?	Black Holes	***
What is the nature of the Dark Energy?	Galaxy Clusters	***
What is the Dark Matter?	Galaxy Clusters	**
Are there new states of matter at exceedingly high density and temperature?	Neutron Stars	***
How were the elements from iron to uranium made?	Supernova Remnants Galaxy Clusters	•
How do cosmic accelerators work and what are they accelerating?	Black Holes Supernova Remnants	**
Is a new theory of matter and light needed at the highest energies?	Neutron Stars (10 ¹⁴ G)	•
What are the masses of the neutrinos, and how have they shaped the evolution of the universe?	Galaxy Clusters	•

Fundamental results ♦♦♦ Major contribution ♦♦ Discovery space ♦

Summary

- High science per dollar Constellation-X addresses 8 of the 11 Quarks to Cosmos Questions, with the focus on Black Holes as tests of GR, Dark Energy, and neutron star equation of state
- Constellation-X based on flight proven optics and instruments — a two order of magnitude increase in capabilities transforming X-ray Astronomy into X-ray Astrophysics — without requiring technical breakthroughs
- Constellation-X engages a large community of scientists with success "guaranteed" based on already known targets with measured fluxes
- Constellation-X will be a "Great Observatory" a unique and essential element in the ground and space-based exploration of the Cosmos as envisioned in the 2000 Decadal Survey

Numbered List of Questions Mapped to RFI (Sci & Inst)

Science and Instrumentation

- 1 Describe the scientific objectives and the measurements required to fulfill these objectives.
- 2 Describe the technical implementation you have selected, and how it performs the required measurements.
- 3 Of the required measurements, which are the most demanding? Why?
- 4 Present the performance requirements (e.g. spatial and spectral resolution, sensitivity, timing accuracy) and their relation to the science measurements.
- 5 Describe the proposed science instrumentation, and briefly state the rationale for its selection.
- For each performance requirement, present as quantitatively as possible the sensitivity of your science goals to achieving the requirement. For example, if you fail to meet a key requirement, what will the impact be on achievement of your science objectives?
- 7 Indicate the technical maturity level of the major elements of the proposed instrumentation, along with the rationale for the assessment (i.e. examples of flight heritage, existence of breadboards, prototypes, etc)
- 8 Briefly describe the overall complexity level of instrument operations, and the data type (e.g. bits, images) and estimate of the total volume returned.
- 9 If you have identified any descope options that could provide significant cost savings, describe them, and at what level they put performance requirements and associated science objectives at risk.
- 10 In the area of science and instrumentation, what are the three primary technical issues or risks?
- Fill in entries in the Instrument Table to the extent possible. If you have allocated contingency please include as indicated, if not, provide just the current best estimate (CBE).

Science and Instrumentation (Optional)

- For the science instrumentation, describe any concept, feasibility, or definition studies already performed (to respond you may provide copies of concept study reports, technology implementation plans, etc).
- 13 For instrument operations, provide a functional description of operational modes, and ground and on-orbit calibration schemes.
- 14 Describe the level of complexity associated with analyzing the data to achieve the scientific objectives of the investigation.
- 15 Provide an instrument development schedule if available.
- 16 Provide a schedule and plans for addressing any required technology developments, and the associated risks.
- 17 Describe the complexity of the instrument flight software, including estimate of the number of lines of code.
- 18 Compare the scientific reach of your mission with that of other planned space and ground-based missions.

Numbered List of Questions Mapped to RFI (Mis Design)

	Mission Design				
19	Provide a brief descriptive overview of the mission design (launch, orbit, pointing strategy) and how it achieves the science requirements (e.g. if you need to cover the entire sky, how is it achieved?)				
20	Provide entries in the mission design table to the extent possible. Those entries in italics are optional. For mass and power, provide contingency if it has been allocated, if not – provide just your current best estimate (CBE). To calculate margin, take the difference between the maximum possible value (e.g. launch vehicle capability) and the maximum expected value (CBE plus contingency).				
21	Provide diagrams or drawings (if you have them) showing the observatory (payload and s/c) with the components labeled and a descriptive caption. If you have a diagram of the observatory in the launch vehicle fairing indicating clearance, please provide it.				
22	Overall (including science, mission, instrument and S/C), what are the three primary risks?				
	Mission Design (Optional)				
23	If you have investigated a range of possible launch options, describe them, as well as the range of acceptable orbit parameters.				
24	24 If you have identified key mission tradeoffs and options to be investigated describe them.				

Numbered List of Questions Mapped to RFI (S/C Imp)

Spacecraft Implementation

- Describe the spacecraft characteristics and requirements. Include, if available, a preliminary description of the spacecraft design and a summary of the estimated performance of the spacecraft.
- Provide an overall assessment of the technical maturity of the subsystems and critical components. In particular, identify any required new technologies or developments or open implementation issues.
- 27 What are the three greatest risks with the S/C?

Spacecraft Implementation (Optional)

- If you have required new S/C technologies, developments or open issues and you have identified plans to address them, please describe (to answer you may provide technology implementation plan reports or concept study reports).
- Describe subsystem characteristics and requirements to the extent possible. Such characteristics include: mass, volume, and power; pointing knowledge and accuracy; data rates; and a summary of margins.
- Describe the flight heritage of the spacecraft and its subsystems. Indicate items that are to be developed, as well as any existing instrumentation or design/flight heritage. Discuss the steps needed for space qualification.
- Address to the extent possible the accommodation of the science instruments by the spacecraft. In particular, identify any challenging or non-standard requirements (i.e. Jitter/momentum considerations, thermal environment/temperature limits etc).
- 32 Define the technology readiness level of critical S/C items along with a rationale for the assigned rating.
- 33 Provide a preliminary schedule for the spacecraft development.
- 34 Spacecraft Characteristics Table (Optional fill out any known entries if you have selected an implementation.)

Numbered List of Questions Mapped to RFI (Mis Ops)

	Mission Operations
35	Provide a brief description of mission operations, aimed at communicating the overall complexity of the ground operations (frequency of contacts, reorientations, complexity of mission planning, etc). Analogies with currently operating or recent missions are helpful.
36	Identify any unusual constraints or special communications, tracking, or near real-time ground support requirements.
37	Identify any unusual or especially challenging operational constraints (i.e. viewing or pointing requirements).
38	Mission Operations and Ground Data Systems Table (Optional – provide only if you have selected a S/C and operations implementation)
39	Total Mission Cost Funding Profile Template

Acronyms and Abbreviations

Å	Angstrom	ChIPS	Chandra Imaging and Plotting System
AANM	New Millennium Survey	CIAO	Chandra Interactive Analysis of Observations
ACIS	AXAF CCD Imaging Spectrometer	CIT	California Institute of Technology
ACS	Attitude Control System	cm	centimeter
ACTDP	Advanced Cryocooler Technology Development Program	CP/CM	Center of Pressure/Center of Mass
ADR	Adiabatic Demagnetization Refrigerator	cps	counts per second
AETD	Applied Engineering Technology Directorate	CPU	Central Processing Unit
AGN	Active Galactic Nucleus	Cs	Cesium
AH	Ampere-hour	CTE	Coefficient of Thermal Expansion
Al	Aluminum	СТІ	Charge Transfer in Efficiency
ALMA	Atacama Large Millimeter Array	cts	counts
AO	Announcement of Opportunity	Cu	Copper
arcmin	arc minutes	CXC	Chandra X-ray Center
arcsec	arc seconds	CXSOC	Constellation-X Science and Operations Center
ASCA	Advanced Satellite for Cosmology and Astrophysics	\mathbf{C}_{t}	Critical Temperature
Au	Gold	CZT	Cadmium Zinc Telluride
BEPAC	NRC Beyond Einstein Program Assessment Committee	DC	Direct Current
ВН	Black Hole	DE	Dark Energy
BHFP	Black Hole Finder Probe	DETF	Dark Energy Task Force
ВІ	Back-Illuminated	DM	Dark Matter
Bi	Bismuth	DOF	Degree-of-Freedom
Bps	bits per second	DSN	Deep-Space Network
С	Carbon	E	Energy
С	Celsius	EELV	Evolved Expendable Launch Vehicle
C&DH	Command and Data Handling	EEPROM	Electronically Erasable Programmable Read-Only
CAA	Committee on Astronomy & Astrophysics		Memory
CADR	Continuous Adiabatic Demagnetization Refrigerator	EGSE	Electrical Ground Support Equipment
CalDB	Calibration Database	ELV	Expendable Launch Vehicle
CBE	Current Best Estimate	EMI/EMC	Electromagnetic Interference/Compatibility
CC	cubic centimeters	EOL	End of Life
CCD	Charge-Coupled Device	EOS	Earth Observing System
CCSDS	Consultative Committee for Space Data Systems	ESA	European Space Agency
Cd	Cadmium	ETU	Engineering Test Unit
CDA	Centroid Detector Assembly	EU	Engineering Unit
CdZnTe	Cadmium Zinc Telluride	eV	electron Volts

Acronyms and Abbreviations (cont.)

Fe	Iron	HV	High Voltage
FFT	Fast Fourier Transform	HXT	Hard X-ray Telescope
FITS	Flexible Image Transport System	Hz	Hertz
FMA	Flight Mirror Assembly	I	lodine
FOM	Figure of Merit	I&T	Integration and Test
FOV	Field of View	I/F	Interface
FPC	Focal Plane Camera	ID	Inner Diameter
FPM	Focal Plane Module	IMDC	Integrated Mission Design Center
FRR	Flight Readiness Review	InFOCµS	International Focusing Optics Collaboration for µCrab
FSW	Flight Software		Sensitivity
FY	Fiscal Year	IR	Infrared
G	Gravitational Constant	IRU	Inertial Reference Unit
Gbit	Gibabit	ISS	International Space Station
Gbytes	Gigabytes	JDEM	Joint Dark Energy Mission
Ge	Germanium	JWST	James Webb Space Telescope
gm	gram	J/T	Joule/Thompson
GMST	Greenwich Mean Sidereal Time	K	Kelvin
GN&C	Guidance, Navigation & Control	kbps	kilobits per second
GR	General Relativity	kByte	Kilobyte
GS	Ground System	keV	Kilo Electron Volt
GSE	Ground Support Equipment	kg	ilogram
GSFC	Goddard Space Flight Center	kHz	KiloHertz
GUI	Graphical User Interface	кон	Potassium Hydroxide
Н	hyperbolic	KSC	Kennedy Space Center
H/K	Housekeeping	ksec	kilosecond
He	Helium	LCC	Life Cycle Cost
HEFT	High Energy Focusing Telescope	LEO	Low Earth Orbit
HEO	High Earth Orbit	LETG(S)	Low Energy Transmission Grating (spectrometer)
HERO	High Energy Replicated Optics	LISA	Laser Interferometer Space Antenna
HETE	High Energy Transient Experiment	LL	Lincoln Labs
HETG(S)	High Energy Transmission Grating (Spectrometer)	LLNL	Lawrence Livermore National Labs
HEW	Half Energy Width	LRF	Line Response Function
HGA	High Gain Antenna	LRR	Launch Readiness Review
HPB	High-Pressure Bridgeman	LST	Large Survey Telescope
HPD	Half Power Diameter	LV	Launch Vehicle
HQ	Headquarters	LV	Low Voltage
HRC	High Resolution Camera	LVPC	Low Voltage Power Converter
		LVPS	Low Voltage Power Supply
		LZP	Level Zero Processing
			550.0

Acronyms and Abbreviations (cont.)

m	meter	ogs	Objective Grating Spectrometer
m/s	meters per second	os	Operating System
MBE	Molecular Beam Epitaxy	oss	Office of Space Science
MHz	Megahertz	OSSMA	Office of Systems Safety and
MIT	Massachusetts Institute of Technology		Mission Assurance
mK	milliKelvin	PHA	Pulse Height Amplitude
MLI	Multilayer Insulation	PMD	ropellant Management Device
mm	millimeter	PoST	Position Sensitive TES
Мо	Molybednium	PSE	Power Supply Electronics
MO&DA	Mission Operations and Data Analysis	PSF	Point Spread Function
MOC	Mission Operations Center	Psia	pounds per square inch, absolute
Ms	millisecond	QPO	Quasi-Periodic Oscillation
MSE	Mission Systems Engineer	RF	Radio Frequency
MSFC	Marshall Space Flight Center	RFI	Request for Information
MUX	Multiplexer	RGS	Reflection Grating Spectrometer
mW	milliWatt	RMS	Root Mean Square
N	Neutron	ROM	Rough Order of Magnitude
NASA	National Aeronautics and Space Administration	ROSAT	Roentgen-Satellite
Nb	Niobium	RSDO	Rapid Spacecraft Development Office
NeXT	Non-thermal Energy eXploration Telescope	RXTE	Rossi X-ray Timing Explore
NIST	National Institute of Standards and Technology	SAO	Smithsonian Astrophysical Observatory
nm	nanometers	S/A	Solar Array
NRAO	National Radio AstronomyObservatory	SBIR	Small Business Innovative Research
NS	Neutron Star	S/C	Spacecraft
NSF	National Science Foundation	SDO	Solar Dynamics Observatory
NTO	Nitrogen tetroxide (or dinitrogen tetroxide), rocket fuel	SDRAM	Synchronous Dynamic Random Access Memory
OAP	Optical Alignment Pathfinder	sec	second
ОВ	Optical Bench	SEP	Science Enhancement Package
ОВС	On-Board Computer	Si	Silicon
OCC/SOC	Operations Control Center/Single Operations Center	SMBH	SuperMassive Black Hole
OD	Orbit Determination	Sn	Tin
OD	Outside Diameter	SNL	Space Nanotechnology Laboratory
ODRM	Observation Design Reference Mission	SPT	South Pole Telescope
		SQUID	Superconducting Quantum Interference Device
		SXT	Spectroscopy X-ray Telescope

Thermal Vacuum

travelling wave tube amplifiers

TV

TWTA

Acronyms and Abbreviations (cont.)

Та	Tantalum	μsec	microsecond
ТВ	Thermal Balance	μm	micrometer
TBD	To Be Determined	UTC	Universal Time Coordinated
TBR	To Be Resolved	ULX	UltraLuminous X-ray source
Tbyte	Terrabyte	VLT	Very Large Telescope
TCP/IP	Transmission Control Protocol/ Internet Protocol	W	Watt
TDRSS	Tracking and Data Relay Satellite System	WHIM	Warm-Hot Intergalactic Medium
Te	Tellurium	XEUS	X-ray Evolving Universe Spectroscopy Mission
TES	Transition-Edge Spectrometer	XGS	X-ray Grating Spectrometer
Ti	Titanium	XIS	X-ray Imaging Spectrometer (on Japanese Mission Suzaku)
TLM	Telemetry	XMM	X-ray Multi-Mirror Mission
TLRD	Top-Level Requirements	XMS	X-ray Microcalorimeter Spectrometer
TM	Telescope Module	Z	red shift
TOO	Target of Opportunity	Zn	Zinc
TPF	Terrestrial Planet Finder	ZOC	Zero Order Camera
TRIP	Technology Readiness and Implementation Plan		
TRL	Technology Readiness Level		
TT&C	Tracking, Telemetry and Command		