Metals in the intercluster medium

Kyoko Matsushita (Tokyo Univ. of Science)

Outline

Metals in intracluster medium

Aims of IXO observations

Recent results of metal observations

- Evolution of Fe abundance
- Abundance pattern of the ICM
- Metal mass to light ratios

Simulated spectra with IXO

Metals in the Intracluster medium

pn

XMM-Newton

Si, S,

Ar,Ca,Fe,Ni

• From SN II

 Star formation history in clusters

 From SN Ia and SN II

History of SN Ia

 From intermediate mass stars

• History of these stars

Fe, Ne Star formation history in clusters

M87

C,N

Star formation history in the Universe

Aims of IXO observations

Large effective area

Small field of view

Good energy resolution

Redshift evolution of metals in ICM

Abundance pattern

- C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, Ni
- Chemical evolution in clusters

Up to virial radius

- Metal supply from cD galaxies are important at central regions
- Gas mass is larger at outer regions

from groups to clusters

 Groups are building blocks of clusters

Outline

Metals in intracluster medium

Recent results of metal observations

- Evolution of Fe abundance
- Abundance pattern of the ICM
- Metal mass to light ratios

Simulated spectra with IXO

Fe abundance of ICM of nearby clusters observed with XMM

<0. 1r₁₈₀

- large scatter
- Difference in metal suply from cD galaxies

 $0.1-0.5 r_{180}$

• ~0.5 solar

 Universal Fe abundance and chemical evolution

Matsushita in prep

Evolution of Fe abundance

Evolution of Fe abundance of ICM

Observation of history of SN Ia rate with IXO

Evolution of Fe abundance of hot ISM in elliptical galaxies

Evolution of SN la rate

- X-ray luminous elliptical galaxies at center of groups
 - Hot gas is dominated by stellar mass loss from elliptical galaxy
 - Observable z<0.5 with IXO</p>

Fe abundance of hot ISM

= stellar Fe abundance + contribution from SN Ia

 \propto (SN la rate)/(stellar mass loss rate)

Fe abundance with IXO To high redshift, up to virial radius

Evolution of metals < 0.1r180

evolution of cooling core

metal supply from cD galaxies

Evolution of metals > 0.1r180

- Universal metal supply from cluster galaxies?
- how about groups of galaxies

Outline

Metals in intracluster medium

Recent results of metal observations

- Evolution of Fe abundance
- Abundance pattern of the ICM
- Metal mass to light ratios

Simulated spectra with IXO

Abundance pattern observed with XMM (de Plaa et al. 2007)

Si/Fe ratio in ejecta of SN Ia depends on models. We need O, Ne and Mg measurements.

O mass to light ratio in the Universe

Half of metals in the solar system : O.

- Chemical evolution of the Universe
- \doteq history of synthesis of O

O is synthesized by SN II

• O mass reflects total amount of massive stars in the past

O mass to light ratio in the Universe

- Galaxies, groups, clusters of galaxies and WHIM
- Initial mass function vs. environment
- Feedback from SN II

New solar abundance by Loddars (2003)

Abundance pattern at 0.1-0.3 r₁₈₀

Are metals synthesized by SN II more extended?

Luminosity and metal density profiles of NGC 5044 group

The effect of the Galactic component Surface brightness of OVII, OVII lines of A1060 observed with Suzaku

C and N evolution

Present knowledge of history of intermediate mass stars is very small

Outline

Metals in intracluster medium

Recent results of metal observations

- Evolution of Fe abundance
- Abundance pattern of the ICM
- Metal mass to light ratios

Simulated spectra with IXO

O and Fe mass to light ratios (OMLR&IMLR)

OMLR =O mass / stellar luminosity IMLR = Fe mass/stellar luminosity

= Fe mass/stellar luminosity stellar luminosity- B-band

The most important parameters to study necleosynthesis in galaxies

IMLR and OMLR increase with radius

Metal mass to light ratio

Small OMLR, IMLR in groups

- Gas mass/stellar luminosity of the groups are small
 - ICM in groups is more extended than those in rich clusters
 - Excess entropy and heating
 - Metal distribution may be used as a tracer of history of heating since timescales of metal enrichment and heating determine the metal distribution.
- metal enrichment -> preheating
 - Similar abundance and smaller metal mass-to-light ratios
- Preheating -> metal enrichment
 - Similar metal mass to light ratio
- Different timescales O and Fe synthesis

IXO Simulated spectra (200ks)

Aims of IXO observations

Large effective area

Small field of view

Good energy resolution

Redshift evolution of metals in ICM

Abundance pattern

- C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, Ni
- Chemical evolution in clusters

Up to virial radius

- Metal supply from cD galaxies are important at central regions
- Gas mass is larger at outer regions

from groups to clusters

 Groups are building blocks of clusters