X-ray Imaging Micro-Calorimeter Spectrometer

Piet de Korte

On behalf of an emerging calorimeter collaboration
Contributors

GSFC (U.S)
 Joe Adams, Simon Bandler, Regis Brekosky, Ari-David Brown,
 Jay Chervenak, Megan Eckart, Richard Kelley, Caroline
 Kilbourne, Scott Porter, Jack Sadleir, Steve Smith

ISAS (Japan)
 Kazu Mitsuda, Yoh Takei, Noriko Yamasaki

NIST (U.S)
 Randy Doriese, Gene Hilton, Kent Irwin, Carl Reintsema, Joel Ullom,
 Leila Vale, and others!

PTB (Germany)
 Joern Beyer, Dietmar Drung

SRON (Netherlands)
 Marcel Bruijn, Bob Dirks, Luciano Gottardi, Henk Hoovers, Jan van
 der Kuur, Manuela Popescu, Marcel Ridder

VTT (Finland)
 Mikko Kiviranta
Mirror Driven Specifications

• Angular Resolution

5 arc sec resolution = 485 - 606 μm for 20 – 25 m focal length

Proposed Pixel size between 250 – 300 μm

• Field of View

7 arc min radius = 71 mm

• Countrate

1mCrab ~ 125 c/sec (May 2008, NASA IXO mirror concept with f = 20 m)
TES-based Micro-Calorimeter

SRON PIXEL DESIGN

Side view Top view
part of 5 x 5 array
TES-based Micro-Calorimeter

SRON ARRAYS

5 x 5 array with Cu stems

5 x 5 array with Cu/Bi absorbers

Close-up of 32 x 32 array
TES-based Micro-Calorimeter

PERFORMANCE for SRON PIXELS from 5 x 5 arrays

$\Delta E_{TDL} \approx 3.1 \text{ eV } T_C = 105 \text{ mK}$

Cu-absorber

$\Delta E = 1.6 \text{ eV @ 250eV}$

100 μs fall time

$\Delta E_{TDL} \approx 3.6 \text{ eV } T_C = 116 \text{ mK}$

Cu/Bi-absorber 0.3/3 μm

$\Delta E = 2.5 \text{ eV at 5.9 keV}$

$\Delta E = 3.1 \text{ eV @ 5.9 keV}$
GSFC TES approach

250 µm

Facility Science Team - GSFC
Multiplexed TES calorimeter array

GSFC 8 x 8 array
NIST SQUID MUX readout

Also developed de-MUX software and we are now working on implementing real-time pulse height analysis
2 x 8 pixels read out with SQUID MUX

~30,000 counts per pixel from ^{55}Fe source

~500,000 total

$$\tau = 280 \mu\text{ s}$$

(critically damped)

$$2x8 \text{ MUX:}$$

$$\langle \Delta E_{\text{FWHM}} \rangle = 2.93 \pm 0.02 \text{ eV}$$
FREQUENCY DOMAIN MULTIPLEXING
CURRENT SUMMING TOPOLOGY

- AC-bias of TES; so that it acts as AM-modulator
- LC noise blocking filter per TES
- One SQUID per column
- Base-band feedback to decrease common impedance, to linearize SQUID response, and to increase dynamic range

1 – 10 MHz frequency range
200 - 300 kHz separation will enable multiplication of 32 – 45 pixels/channel

400 kHz AC-bias: 3.7 eV @ 5.9 keV and 3.5 eV baseline; data is drift corrected
BBFB electronics board realization
Amplitude and Phase measurements/model of BBFB
On a commercial Xilinx breadboard

Amplitude: red-data blue-model Phase: red-data blue-model
Gain-bandwidth of 35 kHz for 200 kHz spacing and 830 ns delay

FLL-gain of 3.5x at highest signal frequency (10 kHz) and 22 x at 1.6 kHz (100 μs pulse decay time)
Focal Plane Array Layout (from Con-X to IXO)

Central, core array:
- Individual TES - one absorber/TES (40 x 40)
- 2 arcmin FOV
- 2.5 eV resolution (FWHM)
- Fast (< 300 µ sec time constant)

Outer, extended array
- 4 absorbers/TES
- Extends array to 52 x 52 pixels for a total of 2176 readout channels
- 5.0 arcmin FOV
- < 10 eV resolution
- ~ 2 msec time constant
Multi Absorber TES - 1 TES, 4 absorbers

Simple approach:
Separate absorbers (e.g., 4) connected to a single TES, each with a different thermal conductance.

Rise times easily distinguished
5-6 eV already obtained!
Optimized high-speed array (GSFC)

- 20 x 20 array of 1 arcsec pixels
- Distribute counts over ~ 10 times more pixels
- Use direct coupling to Si substrate for higher speed (~ 10’s of micro-sec.)
<table>
<thead>
<tr>
<th>Cooler</th>
<th>1ST (100K)</th>
<th>2ST (20K)</th>
<th>2ST+⁴He JT (4K)</th>
<th>2ST+³He JT (2K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W@80K 50W, 4.2kg</td>
<td>325mW@20K 90W, 9.5kg</td>
<td>20mW @4.5K 120W, 23kg</td>
<td>16mW@1.7K 190W, 25kg</td>
<td></td>
</tr>
<tr>
<td>Life time test > 5 years (still running)</td>
<td>Life time test > 4 years (still running)</td>
<td>1 year test was done. A new lifetime test in preparation</td>
<td>Lifetime test in preparation</td>
<td></td>
</tr>
<tr>
<td>Suzaku, in orbit 3.1 years</td>
<td>Akari, in orbit 2.5 years</td>
<td>FM for SMILES assembled</td>
<td>EM for SPICA & Astro-H(NeXT) assembled</td>
<td></td>
</tr>
</tbody>
</table>
Last stage cooler developments in Europe

Interface with satellite cryostat at 2.5 K with 10 mW cooling power

Options under development:

He-3 sorption/1-stage ADR (CEA Grenoble)
30 W and 31 kg for 1 μW during 30 hours

2-stage single shot ADR (Astrium/MSSL or JAXA)
30 W and 31 kg for 1 μW during 30 hours

He-3 sorption/1-stage ADR (CEA Grenoble)
25 W and 5 kg for 1 μW during 30 hours

Closed cycle dilution refrigerator (Air Liquide, Institute Neel)

XEUS - NFI X-ray experiment
- requires 1 μW at 50 mK for ADR
 - CCDR meets requirement with $i_3 = 30 \mu\text{mole/s}$, $i_4 = 120 \mu\text{mole/s}$
 and a heat exchanger of $L = 9$ m
 and $d = 0.4$ mm
 - better thermalization of wiring reduces required cooling power for CCDR
- precooling stage of XEUS delivers 10 mW at 2.5 K
 - CCDR needs 5 mW at 1.5-1.8(?) K
 - solution: ^3He Joule-Thompson expansion from 15 K or with SPICA technology
Cryostat design adopted for recent IDL study at GSFC

Facility Science Team - GSFC

Kevlar Suspension System

ADR Stage 1

ADR Stage 4

ADR Stage 5

ADR Stage 3

ADR Stage 2

Detector Package

Telescope focal Point

Facility Science Team - GSFC
Si-doped X-ray Micro-calorimeter at CEA-Saclay

Herschel heritage: Developments by CEA-Saclay and LETI, Grenoble
Contributed paper by Claude Pigot
Fully integrated sensor with read-out multiplexer

Results: - Impedance of 8X8 sensor matrix in the right range with good sensitivity
- Integration of absorber matrix onto sensor matrix promising

Next steps: April 2008: First 8X8 array with freed Sensor & Absorber
End 2008: 1st Iteration Cold Electronics

Pro: Fully integrated system with multiplexed read-out
Con: Till now no X-ray performance data, use of Ta-absorbers by other teams failed, potentially slow response, developments late for XEUS.
Focal Plane Array Layout for XEUS → IXO

Field of View: 2.75 x 2.75 arcmin

Central pixels: 1.37 x 1.37 arcmin
2.5 x 2.5 arcsec pixels
2 eV @ 2 keV
100μs decay time

Surrounding pixels:
5 x 5 arcsec pixels
4 eV @ 2 keV
400μs decay time