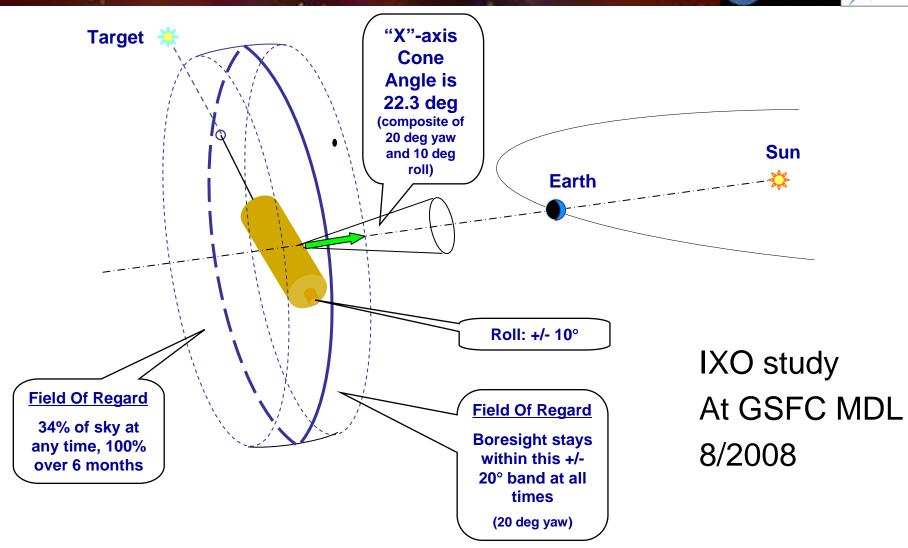
IXO International X-ray Observatory

TOOs: Prospects and Capabilities

Michael Garcia, SAO IXO SAO Science Lead

esa


QUESTIONS:

- What are the TOO capabilities of IXO?
 - -Ground System
 - -Spacecraft systems
 - -Lifetime
- What TOO science do we want to do?
 - -White papers, FST
 - -Compare to Previous missions (Chandra, XMM)

TOOS: Ground system

- Requirements relevant to TOOs (from old Con-X TLRD – need XEUS input):
 - Must be on target within 24 hours of 'go' for TOO, goal to be on target in 12 hours.
 - Maximum of 2 TOOs per month (Chandra rate-not all 'fast'). [replans require ~1 week of operations team time = \$\$]
 - Processed data to observer in <2 week, goal of 72 hours (Chandra often does 1 day).

TOOs: Spacecraft systems

eesa-

XA

IXO

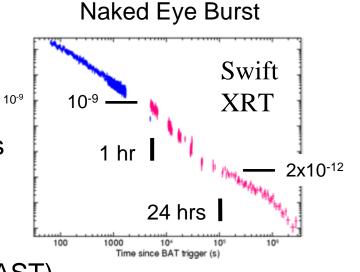
TOOs: Spacecraft systems

- Field of Regard (FOR):
 - 34% of sky at any moment
 - 100% of sky within 6 months
 - Solar arrays, sunshades, thermal control system all sized for +/- 20 degrees yaw, +/- 10 degrees roll
- Slew rate
 - 60 degrees in <1 hour
 - Includes settle time
- Lifetime
 - -5 year nominal, 10 year extended

Numbers/Types of TOOs?

White Papers (both new and old)

- Accretion Physics (BH, NS, WD) in outburst (Miller)
 - Expect ~1, ~1, ~10 per year based on observed rate
- X-raying the Hot IGM (Shull)
 - IXO area increase means we do not need TOOs!
 - Still might expect a few special opportunities
- Comets (Feigelson)
 - Path may cross IXO field of regard not really TOOs?
- TOO Observations of nearby SN1a/c (Hughes old white paper)
 - Expect ~1 per year (within 10Mpc, Virgo). Average Chandra rate = 2/year (within 30Mpc, GRB like)
- GRB at high z (epoch of re-ionization, Brandt)
 - Less than 6 hour access helps a lot
 - trigger:? JANUS (proposed SMEX) rate 25(or 4)/year for z>5(or 8)


From Neil Gehrels

IXO will fly in era of transient astronomy LSST, LISA, SKA, ICECUBE - transients

Suggested consideration of transients for IXO Fast response Constraint checking onboard (a la Swift, GLAST)

Ad hoc transient interest group:

Gehrels, Brandt, Burrows, Mushotzky, Nousek, Piro, Garcia Others welcome

GRB 080319B

Numbers/Types of TOOs?

- Compare Chandra and XMM TOO rates
 - Chandra: 215 unique targets/9 years = 24 targets/year
 - XMM: 104 unique targets/8 years = 13 targets/year
- Ratio of rates (=1.85) same as ratio of FOR (=1.81) implies FOR predicts TOO capability

ASSUME: TOO distribution not correlated with FOR; therefore sky coverage = capacity to observe ToO (Caveat: Galactic center, overprediction?)

Chandra	XMM	IXO
Pitch = $45^{\circ} - 180^{\circ}$	Pitch = +/- 28°	Yaw=+/-20°
FOR=85%	FOR=47%	FOR=34%
Rate=24/y	Rate=13/y	Rate=9.4/y ?

Summary:

- IXO is capable and likely to do significant and substantial TOO work
- Numbers of TOOs in 10 year mission may be ~94
- Increasing FOR (Field of Regard) via modifications to Solar Arrays, Sunshades, Thermal system might allow a factor of 2 higher TOO rate, but at expense of added mass – which may result in decreased effective area
- Will look into on-board constraint checking, ala Swift, GLAST: decrease replan \$\$?
- Email list: ixo-transients@list.nasa.gov