Hot Baryons in Deep Potential Wells

Hot Gas in Galaxies, Groups, and Clusters of Galaxies

Megan Donahue Chair: Christine Jones Keith Arnaud, Andi Mahdavi, Kazuhiro Nakazawa, Paul Nulsen, Scott Randall, Mateusz Ruszkowski, Jan Vrtilek

Science Questions

How did galaxies grow?
 What role did AGN play in galaxy formation?

What is the universe made out of?

Scaling Relations and Cosmolgy: Why do we want to understand clusters?

+ Accurate empirical relations between cluster virial mass and observables are key.

+ A physical model allows us to self-calibrate (cross-check assumptions)

+ A physical model that works gives confidence to the method

 A physical model that falls short casts doubt on the method.

big picture issues

Gravity physics: testing at largest scales Interarchical structure formation & CDM ø dynamical tests of dark energy models Astrophysics: IGM > Galaxies > IGM ICM & IGM metallicity and entropy Gas properties at r_{virial} and beyond Feedback modes: cold/hot, "bouncer"/"velvet rope" (coined by Neal Katz)

Hot gas in clusters and groups

- 85% of baryons are intergalactic, and never have been or will be in stars: clusters and groups are where this matter shines.
- X-ray spectroscopy + imaging: where and how much dark matter there is, from temperature and density gradients.
- Measurements of ICM metallicity and entropy outside the core provide clues to history of feedback from galaxies.
- Measuring AGN output: cavity volume & pressure, ICM core entropy, velocities, and temperatures provide clues to on-going AGN feedback.

The role of IXO

We need better cluster models <u>and</u> better empirical determinations of ICM mass-observables (to higher z, and to constrain scatter and evolution of scatter) to inform cosmological constraints.

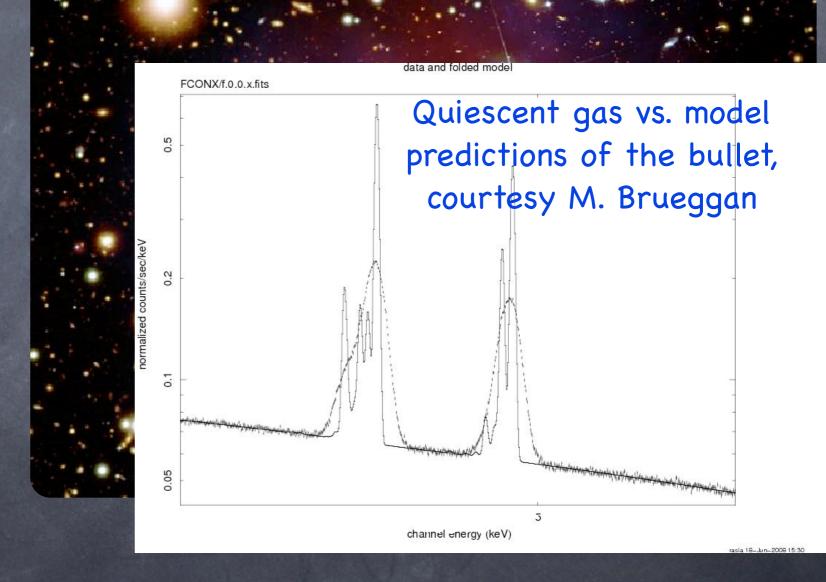
- We need better and different measurements of ICM, to test and inform models of clusters: velocities, line widths, accurate abundances of hot gas, hard X-ray emission.
- We need better information about low surface brightness emission: group outskirts, clusters near the virial radius.

The bullet cluster: a picture of 10⁶³⁻⁶⁴ ergs

Shocks and cold fronts

 Magnetic field and relativistic particles (with radio observations)

Velocities: flows and turbulence


Photo credit: Bill Forman

The bullet cluster: a picture of 10⁶³⁻⁶⁴ ergs

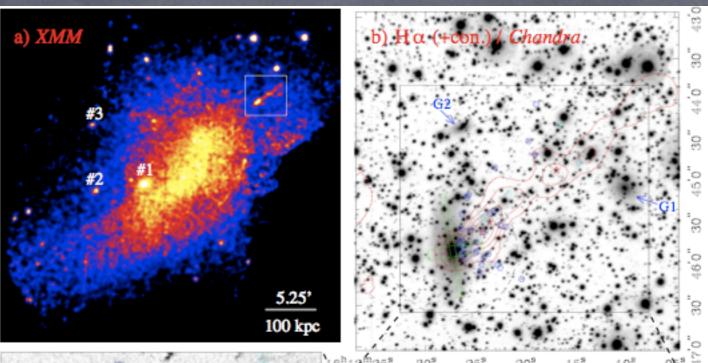
Shocks and cold fronts

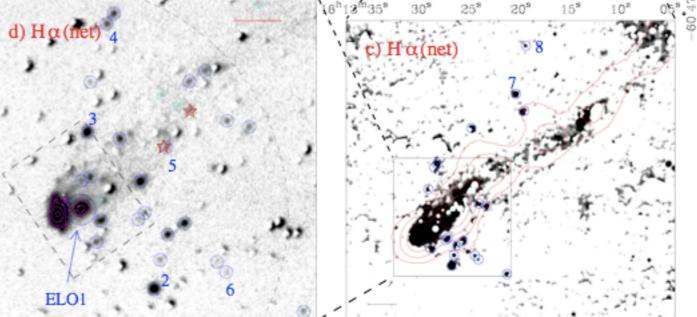
Magnetic field and relativistic particles (with radio observations)

Velocities: flowsand turbulence

Viscosity

Forman et al 2008


Sloshing and stripping

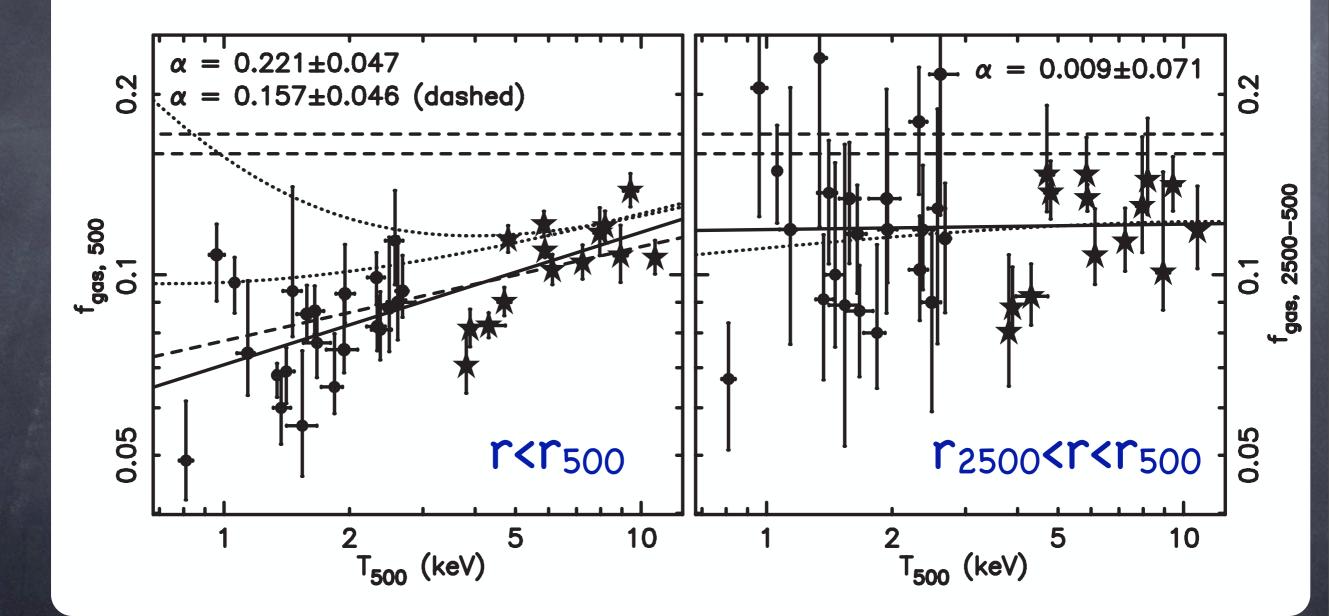

- Can sloshing heat? (few 10s of km/s required)
- Stripping of
 ellipticals (M86)
- Metals: stripped
 ISM, wind-driven
 ISM.
- Metals: produced by intergalactic stars.

Sloshing and stripping

- Can sloshing heat?
 (few 10s of km/s required)
- Stripping of
 ellipticals (M86)
- Metals: stripped
 ISM, wind-driven
 ISM.
- Metals: produced by intergalactic stars.

Stripping of spirals (A3627)

Cluster outskirts


Long cooling time: entropy retains imprint of past events.

Enrichment: same or different from dense ICM?
Virial radius: accretion shock(s)?

Group baryon fraction: between $r_{2500}-r_{500}$ it is the same as clusters? (Sun et al 2008).

Service Enrichment mechanism: alpha-Fe ratios?

f_{gas} in groups between r_{2500} r_{500} is the same as in clusters

Sun et al 2008; Vikhlinin et al 2008

IXO requirements

Spectral resolution: tens of km/s to resolve redshifts and line widths generated by turbulence(requires a large collecting area as a corollary)

Spatial resolution: 5" or better required to limit contamination by background AGN. Better resolution needed to image shocks and bubble edges.

Background: low background, local measurements (flat, well-understood response), independent confirmations. Modeling will be required to be more specific.

Decadal to-do list

Improve our discussion of simulations: cosmologically realistic hydro simulations: collisions, stripping, AGN interactions, effects of conduction, magnetic fields, turbulence (recruit more theorists?)

Develop observing programs of groups and clusters assuming realistic backgrounds.

Coordinate the presentation of cluster working groups: a coherent and compelling science case is present, but hard to develop in isolation.

Directly connect the observations to big science questions of broad community interest (astronomy and physics).