The Equation of State of Neutron Stars: Neutron-star masses, radii and internal composition.

Mariano Méndez

Kapteyn Astronomical Institute, University of Groningen, The Netherlands

Didier Barret (CESR), Shunji Kitamoto (Rikkyo), Jon Miller (Michigan), Frits Paerels (Columbia), Tod Strohmayer (NASA/GSFC), Phil Uttley (Southampton) ...

... and many others ...

Neutron-star structure

Atmosphere Envelope Crust Outer core Inner core $\rho \sim 10^{14} \text{ gr cm}^{-3}$

 $\rho \sim 10^{15} - 5 \times 10^{15} \,\mathrm{gr}\,\mathrm{cm}^{-3}$

Figure courtesy of D. Page

The interactions between the particles that constitute stars determines the equation of state (EOS), a relation between pressure and density, $P = P(\rho)$, that can be translated into a mass-radius relation, M = M(R). For neutron stars (NS):

$$\frac{dP}{dr} = -\frac{G\rho m}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi P r^3}{mc^2}\right) \left(1 - \frac{2GM}{c^2 r}\right)^{-1}$$
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

plus a prescription for $P = P(\rho)$

The interactions between the particles that constitute stars determines the equation of state (EOS), a relation between pressure and density, $P = P(\rho)$, that can be translated into a mass-radius relation, M = M(R).

EOS is reasonably wellknown for the outer parts of the NS, but is unconstrained for the high-density core.

Uncertainty due to inability to extrapolate our knowledge of normal nuclei (with 50% proton fraction) to the highdensity regime of nearly 0% proton fraction.

EOS models depend upon assumptions made about the phase of matter in the core: (e.g., hadrons, Bose-Einstein condensates, quark matter).

Each new phase increases the compressibility of the star, allowing for a smaller NS.

Neutron-star EOS: Why?

- QCD (e.g., existence of Bose-Einstein condensates or free quarks at low temperatures); relevant to high-energy and particle physics.
- Dynamics of supernovae explosions.
- NS–NS mergers, which are likely progenitors of short GRBs and sources of strong gravitational waves.
- Stability of neutron stars.
- NS cooling which, compared to observed NS temperatures, provides NS ages.

Dynamical mass constraints

Masses of NS obtained from pulsars in binary systems.

 $\langle M \rangle = 1.35 \pm 0.04 M_{\odot}$

Thorsett & Chakrabarty

The interactions between the particles that constitute stars determines the equation of state (EOS), a relation between pressure and density, $P = P(\rho)$, that can be translated into a mass-radius relation, M = M(R).

Note that some NS masses are very accurately known (in some cases down to 0.1%!!), but measuring the mass alone does not help.

Requires measurements of (a combination of) NS *mass <u>and</u> radius.*

Neutron star EOS measurements and constraints

Time-resolved spectroscopy and photometry:

- Redshifted photospheric lines $\rightarrow M/R$ (potentially M/R^2).
- Profile of photospheric lines $\rightarrow M-R$.
- Pulse waveform $\rightarrow M \neg R$.
- Quasi-periodic oscillations $\rightarrow M \neg R$.
- Fe emission (disc) lines $\rightarrow M/R$ (from disc)
- Frequency-resolved time-delay spectrum $\rightarrow R$ (from disc)

Photospheric absorption during X-ray bursts

EXO 0748-676, a known X-ray burster
XMM-Newton observed it as a calibration target:
~ 335 ks with RGS cameras; spectra of 28 X-ray bursts co-added.

Absorption lines at λ 13.0Å and λ 13.7Å in the combined early- and late-burst spectra, respectively.

Fe XXVI (n = 2-3) and Fe XXV (n = 2-3), respectively, at the same redshift $z = 0.35 \pm 0.01$.

Cottam, Paerels & Méndez

EOS – Constraining mass and radius

$M/R = 0.15 \pm 0.01 M_{\odot}/{ m km}$

Rotational broadening of "structured" lines

Rotational broadening may be significant, depending on spin frequency and viewing angle.

Chang et al.

Spectral line profile

Mechanisms that affect the shape of spectral lines:

- longitudinal and transverse Doppler shifts,
- special relativistic beaming,
- gravitational redshifts,
- light-bending,
- frame-dragging.

Simulated spectral line profile

HTRS and Calorimeter

Simulations by J. Wilms et al.

Simulations

45 Hz

400 Hz

Fe XXVI z = 0.35

n = 2 - 3Balmer α

Pulsations during X-ray bursts

Strohmayer et al.; Spitkovsky et al.

Pulsations during X-ray bursts

Simulated pulse profile for the rising phase of an X-ray burst (T. Strohmayer). Simulated pulse profiles for a 1.8 solar mass NS with a spin frequency of 364 Hz. (C. Miller).

Pulsations during X-ray bursts

Mass and radius constraints from pulse-profile fitting. The red ellipse shows the 95% confidence regions from 5 typical bursts (C. Miller).

Quasi-periodic oscillations

Mass and radius constraints from timing

$$\nu = \frac{1}{2\pi} \sqrt{\frac{GM_{\rm NS}}{r^3}}$$

$$r_{\rm isco} \leq r$$

$$R_{\rm NS} \leq r$$

$$r_{\rm isco} = \frac{6GM_{\rm NS}}{c^2}$$

$$M_{
m NS}~\leq~2.2 (
u/1000 {
m Hz})^{-1} M_{\odot}$$

 $R_{
m NS}~\leq~14.6 (M_{
m NS}/M_{\odot})^{1/3} (
u/1000 {
m Hz})^{-2/3}~{
m km}$

C. Miller et al.

Emission lines from the inner disc

Suzaku

XMM-Newton

 $M/R = 0.03 - 0.17 M_{\odot}/\text{km}$

Cackett et al.; Bhattacharyya & Strohmayer

Tracking the inner disc radius

Energy (keV)

Frequency (Hz)

IXO/HTRS simulations by D. Barret

Measuring the inner disc radius

Gilfanov et al.

Frequency-resolved time-delay spectrum

IXO/HTRS simulations by P. Uttley

Neutron star EOS measurements and constraints

