ESA configuration study of the

International X-ray Observatory

- 1 Introduction
- 2 IXO mission requirements and spacecraft configuration
 - Instrument module
 - Service module
 - Mirror assembly
- 3 Conclusion

International X-ray Observatory (IXO): terms of reference

A proposal for a joint ESA/JAXA/NASA study of an International X-ray Observatory was accepted at an ESA-NASA bilateral meeting on 2008, July 14, with JAXA concurrence. Input elements to IXO configuration include:

- 1 A single large X-ray mirror assembly compatible with both pore optics and slumped glass technology
- 2 An extensible optical bench to reach F=20 to 25m + ways to maximise Aeff above 6 keV
- 3 Instruments include a wide field imager, a high resolution non-dispersive spectrometer, an X-ray grating spectrometer + instruments with modest resources
- 4 The IXO concept must be compatible with both Ariane V and Atlas V 551 launchers.

→ The IXO concept will be the input to the US decadal survey and ESA Cosmic Vision selection process

IXO assessment study overview

- 1) Preparation phase: (mid-July 2008 → mid-October 2008) - Bridding or an Enternational ESA-JAVA-NASA Shavoration scheme ection)
 - Definition of the preliminary science requirements
 - Preliminary definition of the payload instrumentation
- 2) IXO CDF mission study: (Phase 0: October 9th \rightarrow November 11th 2008)
 - \rightarrow Mission concept
 - → Consolidated payload definition document + mission requirement document + science requirement document
 - \rightarrow Input to IXO proposal for NASA decadal survey
- 3) IXO CDF telescope studies: (February/March 2009)
 - → Consolidation of critical aspects (MA, deployment bench, cryogenics, straylight, environment)
 - → preparation of ITT to industry: mirror module specification and interface requirements
- **4)** Two parallel Industry system studies: (Phase A: Q2 2009 → Q2 2010)
- 5) ESA synthesis of the assessment study (Cosmic Vision selection process): (Q3 2010)
 - Mission and payload technical feasibility
 - Technology development status
 - Risks, programmatic and cost

IXO configuration study

1 – Introduction

2 – IXO mission requirements and spacecraft configuration

- Instrument module
- Service module
- Mirror assembly

3 – Conclusion

IXO payload model

1 single large aperture X-ray telescope:

3 core instruments:

- Wide Field Imager + Hard X-ray Camera
- Cryogenic Imaging Spectrometer (CIS)
- X-ray Grating Spectrometer (XGS)
- + 2 additional payload elements:
 - High Time Resolution Spectrometer (HTRS)
 - X-ray Polarimeter (XPOL)

IXO mission requirements: launcher and orbit

- Launcher: Ariane-5 ECA & Atlas V 551
 - Launcher performance Ariane 5 (excl. adapter) $\approx 6170 \text{ Kg}$
 - Launcher performance Atlas V 551 (excl. adapter) ≈ 6108 Kg
- Target Orbit: direct launch into L2
- 5 years mission (with consumables sized for 10 years operation)
- Launch ≈ 2020

IXO configuration

IXO team meeting January 28, 2009

IXO configuration

X-ray telescope with high energy response → long telescope focal length → deployable optical bench

During science operation,

- the grating spectrometer is always operating
- any of the other 4 instruments can be placed at the focus of the X-ray telescope.

 \rightarrow instrument exchange mechanism

The instruments shall be protected from particle background and stray-light → cylindrical baffles and/or (deployable) shroud

IXO configuration

IXO configuration study

- 1 Introduction
- 2 IXO spacecraft configuration – Instrument module
 - Service module
 - Mirror assembly
- 3 Conclusion

IXO instrument module: resources summary

Instrument	Power	Mass	Data rate	Comment
WFI	280 W	90 kg	<1Mbps	
HXI	43 W	31 kg	<1Mbps	
XPOL	44 W	15 kg	<1Mbps	
HTRS	113 W	31 kg	MM	
CIS	521 W 576 W recycling	243 kg	<1.7Mbps	Incl cryogenics & 100K radiator
XGS	68 W	52 kg	158 kbps 1.8Mbps peak	Incl gratings & baffle

IXO instrument module: WFI+HXI

WFI specifications:

- Imaging spectrometer 0.1-15keV
- Single Si chip array of 1024x1024 active pixels
- Pixel Pitch=100µm
- Area = $102 \times 102 \text{ mm}^2 = 17.5^{\circ} \times 17.5^{\circ}$

HXI specifications:

- Imaging spectrometer extension to 40keV
- FOV = 12' circular
- Based on Si + CdTe double-sided strip detectors
- Mounted behind WFI (detector 30mm out of focus TBD)
- BGO anti-coincidence

IXO instrument module: CIS

- Cryogenic imaging spectrometer based on TES
- Energy range = 0.1-10keV
- Inner array: 40x40 pixels (300x300 μ m²), Δ E<2.5eV
- Outer array: 52x52 pixels (600x600 μ m²), Δ E<10eV
- $T_{det} = 100 \text{mK} \pm 1 \mu \text{K}$ (50 mK cooler I/F)
- $FoV = 5.4 \ge 5.4 \text{ arcmin}$
- CDF baseline: most demanding combination of European (NFI) and US (XMS) concepts
- Assumed US detector and Europe cooler

IXO instrument module: CIS

- 280K cryostat + 100K radiator
- 2 stage 10-15K Stirling cooler (2x)
- 2-2.5K JT cooler (4x)
- (300mK sorption cooler + 50mK ADR)
- Redundant pre-cooler concept
- Cryostat @ RT -> simplifies I/F and testing

IXO instrument module: XGS

XGS grating box assumptions (based on a CAT design):

- Selected 1.1 m < R < 1.9 m and two sectors of 22.5° each.
- Box dimensions ~70 x 80cm structure support Al ~2cm deep (silicon grating only 3 microns thick)
- 2.4 kg incl 20% margin each box
- No attempt to address mounting to mirror, unit calibration, temperature constraints etc . . .

XGS camera assumptions:

- Mass ~ 20.4 kg incl margins.
- Power ~ 65 W incl margin + 3W CCD thermal control
- No translation stage needed at 3 σ error level
- Refocussing mechanism needed

IXO instrument module: XPOL

X-ray polarimeter based on scintillating gas cell

- Track detection gives polarization angle
- 300 x 352 pixels (50x43.3μm²) FOV = 2.6'x2.6'
- E=2-10keV, $E/\Delta E=6$
- $T_{det} = 283K \pm 2K$
- Room temp electronics
- 1 detector head + FEE & 1 back-end box all on MIP

IXO instrument module: HTRS

- High time resolution spectrometer: ~1Mcps, 10us resolution
- 0.5-20keV
- based on 37 Silicon drift detector diodes placed in defocused beam (182mm)
- $T_{det} = 253K \pm 1K$
- 1 detector head + FEE & 1 electronic box on MIP
- The instrument is non-imaging
- Multiple pixels are used for distributing the photons and achieving higher count-rate capability

IXO instrument module: configuration

IXO configuration study

1 – Introduction

- 2 IXO spacecraft configuration – Instrument module – Service module
 - Mirror assembly
- 3 Conclusion

IXO service module

Power subsytem:

- Max- power requirement: 4.5 kW
- 26.4 m2 deployable solar array (Ga As cells)
- Li-ion battery (MA temperature control before Sun acquisition 650 W during 2 h)

Telecommunication:

- 90 Gb/day (8.7 Mbps during 3 hours)
- X bands around 8 GHz (10 MHz band)
- Standard equipment: 10W RF power
 - (2 X/X transponder, 2 TWTA, 2 LGA, 1 40cm HGA, 1 RFDU)
- New Norcia 35 m antenna G/S (baseline)

IXO service module

Data handling decentralized architecture:

- On Board Computer (OBC) located in the S/C Bus
- Instrument Control Unit (ICU) located on the instrument platform for interfacing the IXO payloads/instruments
- 2 x 250 Gbit memory using SDRAM technology located in the instrument platform

Propulsion:

- A Monopropellant system using Hydrazine (N_2H_4) is selected:
- 24 20N thrusters
- 3 Titanium diaphragm tanks (Planck mission heritage)

IXO service module: mechanisms

- Optical bench deployment mechanism (articulated boom concept)
- Instrument exchange and refocusing mechanism
- Mirror assembly deployable sun shield
- Outer mirror assembly ejectable cover
- High gain antenna pointing mechanism
- Solar array deployment mechanism
- Instrument baffle cover and contamination venting doors

IXO service module: deployment

- Performance in deployed configuration (prel estimates) ms
 - Deployment accuracy: 1.2 mm radius sphere (RSS)
 - \rightarrow displacement calibration + pointing correction

IXO team meeting January 28, 2009

ESA configuration study

International X-ray Observatory [XO]

Shroud Scale Model

The GSFC Blanket shop created a 1/25th scale prototype that stows to about 7% of nominal extension length. (3.5/49)

<u>1</u>4.5 cm I<u>D</u> 18 cm OD 49 cm 65 cm max

IXO team meeting January 28, 2009

Preliminary IXO pointing and optical bench stability requirements

Preliminary image quality error budget (HEW on-axis at 1 keV):				
- Mirror module manufacturing errors:	4.30 arcsec			
- Optical design (conical approx.~ 3 arcsec)				
- Mirror figuring errors:				
- Mirror mid-frequencies errors & surface roughness:				
- Mirror plate alignment/confocality:				
-Mirror assembly system errors:	1.20 arcsec			
- Assembly and integration				
- 1 g release				
- Thermal environment				
- Other (e.g. moisture release)				
- S/C pointing and optical bench distorsions:	2.00 arcsec			
- Events relative lateral measurement accuracy				
- Absolute longitudinal displacement errors				
- Margin: (including PSF sampling/detector pixel size)	1.00 arcsec			
Total (assuming RSS summation):	5.00 arcsec			
iotai (assuining KSS suinination).	J.00 alcsec			

ESA configuration study

IXO service module: attitude and orbit

- Guidance, Navigation and Control Equipments Stem
 - Actuators
 - 5 Honeywell reaction wheels: HR16 (120 Nms)
 - 24 monopropellant thruster: 22 N
 - Attitude sensors
 - Sodern autonomous star tracker: Hydra
 - TNO fine sun sensor (calibrated bias error: 0.01°)
 - TNO sun acquisition sensor (accuracy < 1°)
 - SAE MEMS rate sensor (rate bias drift < 5°/hr)
 - Alignment monitoring camera
 - Sodern coarse lateral sensor (derived from Hydra) FoV: 1° – accuracy < 1"

IXO configuration study

- 1 Introduction
- 2 IXO spacecraft configuration – Instrument module – Service module
 - Mirror assembly
- 3 Conclusion

IXO mirror assembly: specification requirements

Effective area: 3 m^2 at 1.25 keV Image quality: 4.5 arcsec at 1.25 keV Design: double-conical approx to Wolter I F = 20 m (accommodation constraints) FOV = 18 arcmin diameter (WFI) Technology: pore optics

CDF output: the mass of the IXO mirror assembly shall be lower than 1780 kg

IXO mirror assembly: optical design

F: 20.0m Rin: 0.25m Rout: 1.90m Nr. of Petals:

Optical design assumption:

- Inner radius 0.25 m, outer radius 1.90 m
- 32 rows
- 236 mirror modules/petal
- spoke width (7cm)

→ To achieve the 3m2 Aeff requirements, the azimuthal/ radial spacing of the mirror modules shall be ≤16 mm (22mm assumed for XEUS)

--> The compatibility of the optical bench structure with the allocated mirror module spacing, mass, spoke width and launch loads has to be demonstrated by FEM analysis.

IXO mirror assembly: performance estimate (TBC)

Without C overcoating:

- Aeff (1.25 keV) ~ 2.6 m2
- Aeff (6.00 keV) $\sim 0.65 \text{ m2}$

With 90 Angstrom C overcoating:

Aeff (1.25 keV) ~ 3.0 m2

Aeff (6.00 keV) ~ 0.65 m2

To achieve the 3m² Aeff at 1.25 keV requirements, the mirror modules shall be covered with a C overcoating

IXO mirror assembly: performance estimate (TBC)

IXO configuration study

- 1 Introduction
- 2 IXO spacecraft configuration
 - Instrument module
 - Service module
 - Mirror assembly

3 – Conclusion

Science Performance Requirements

Mirror Effective Area	3 m ² @ 1.25 keV 0.65 m ² @ 6 keV with a goal of 1 m ² 150 cm ² @ 30 keV with a goal of 350 cm ²	Black hole evolution, large scale structure, cosmic feedback, EOS Strong gravity, EOS Cosmic acceleration, strong gravity
Spectral Resolution	$\Delta E = 2.5 \text{ eV within } 2 \text{ x } 2 \text{ arc min } (0.3 - 7 \text{ keV}) \cdot \Delta E = 10 \text{ eV within } 5 \text{ x } 5 \text{ arc min } (0.3 - 7 \text{ keV})$ $\Delta E < 150 \text{ eV } \textcircled{0} 6 \text{ keV within } 18 \text{ arc min diameter} (0.1 - 15 \text{ keV})$ $E/\Delta E = 3000 \text{ from } 0.3-1 \text{ keV with an area of } 1,000 \text{ cm}^2 \text{ for point sources}$ $\Delta E = 1 \text{ keV within } 8 \text{ x } 8 \text{ arc min } (10 - 40 \text{ keV})$	Black Hole evolution, Large scale structure Missing baryons using tens of background AGN
Mirror Angular Resolution	≤5 arc sec HPD (0.1 – 10 keV) 30 arc sec HPD (10 - 40 keV) with a goal of 5 arc sec	Large scale structure, cosmic feedback, black hole evolution, missing baryons Black hole evolution
Count Rate	1 Crab with >90% throughput. ΔE < 200 eV (0.1 – 15 keV)	Strong gravity, EOS
Polarimetry	1% MDP on 1 mCrab in 100 ksec (2 - 6 keV)	AGN geometry, strong gravity
Astrometry	1 arcsec at 3σ confidence	Black hole evolution
Absolute Timing	50 µsec	Neutron star studies
Cesa 🖽 🗛	IXO team meeting January 28, 2009	

IXO mission concept: conclusion

An IXO mission concept has been established that is:

- compatible with IXO science performance requirements
- technically promising (no show-stopper identified)
- modular and well-suited to an International collaboration

The deployable IXO mission concept presents some risks:

- large number of experiments
- large number of deployable mechanisms
- complex collaboration set-up (high cost risk)

Highest technical risk areas include:

- mirror technology and overall mirror assembly (including grating accommodation),
- cryogenic imaging spectrometer (including cryogenic chain),
- bench deployment mechanism,
- instrument exchange mechanism,
- shroud (deployment and micrometeorites impact/straylight)
- mirror assembly cover/ front sunshield deployment
- instrument alignment vs mirror assembly/ metrology