The IXO High Time Resolution Spectrometer

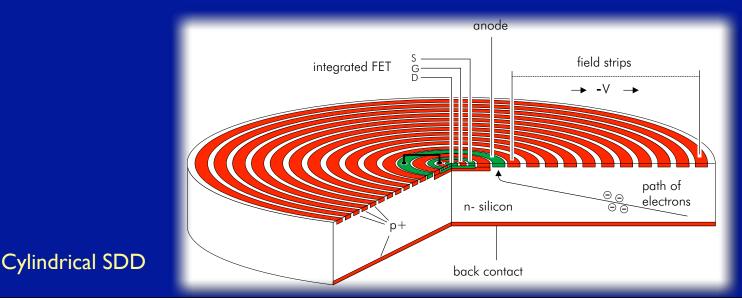
Didier Barret, Carine Amoros, Karine Lacombe, Pierre Mandrou, Jacques Landé, Damien Rambaud, Pascale Ramon, Roger Pons CESR Toulouse

> Lothar Struder and Peter Lechner MPE-MPI Munich

> Joern Wilms University of Erlangen-Nuremberg

Eckhard Kendziorra & Michael Martin University of Tübingen

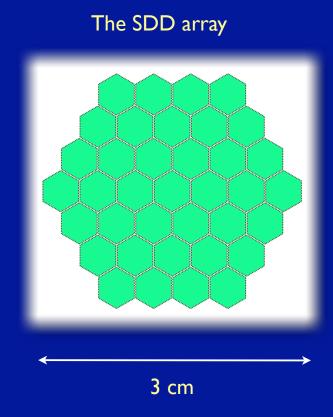
With support from the HTRS science working group: DB, Shunji Kitamoto, Mariano Mendez, Jon Miller, Frits Paerels, Tod Strohmayer, Phil Uttley, Joern Wilms And a larger group of 60 scientists in Europe, Japan and United States

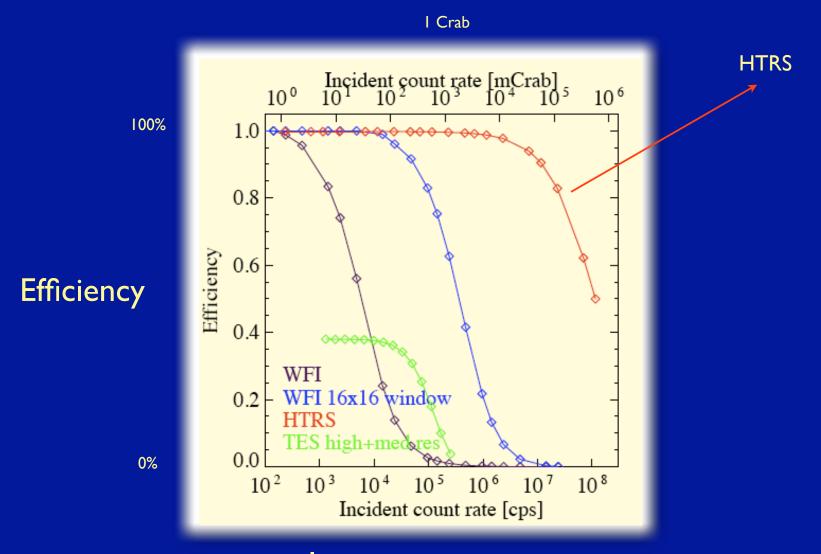

The HTRS for IXO

- ✓ The HTRS will provide IXO with the capability to observe bright X-ray sources (Crab or above):
 - ✓ black hole spins, type I X-ray bursters, magnetars, accretion disk physics
 - "Matter under extreme conditions" science goal of IXO
- The HtRS matches the top-level mission requirement of :

✓ handling a I Crab source, with >90% throughput, microsecond time resolution, and better than 200 eV resolution

Detector principle


- ✓ Based on an array of Silicon Drift Detectors:
 - ✓ Fully depleted high resistivity Silicon
 - ✓ Increasingly biased rings drive the electrons towards a very small size, small capacitance anode. The first stage of the amplifying electronics is integrated onto the chip
 - Provides the capability to handle high count rates, with relatively good energy resolution
 - Used in synchrotron facilities, electro imaging, X-ray holography (up to Mcts/s rates)


Implementation

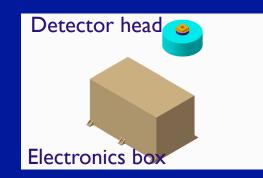
- ✓ The detector is an array of 37 hexagonal SDDs placed out of focus, so that:
 - ✓ 100 % of the focal beam is intercepted by the array and counts are spread as uniformly as possible on the array
 - I2 cm out of focus distance for 2.3 mm hexagons
 - The brightest SDD get 3.5% of the counts or ~7000 counts/s @ I Crab

 The shaping time constant is set to a minimum of 50 ns, equivalent to a 300 ns deadtime per event

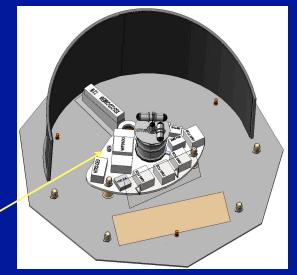
Count rate capability

Input count rate

HTRS performance


Energy range	~0.3 to 15 keV
Time resolution	10 μs
Energy resolution	~150 eV @ 6 keV
l crab count rate	~200 000 counts/s
Throughput ^{I)} @ I Crab	> 99 %
Throughput @ 10 Crab	~97 %
Data rate max @ I Crab	~6.6 Mbits/s ²⁾

() estimated through extensive Monte Carlo simulations


²⁾binned spectral mode, 1/4096 seconds, 512 channels (without compression)

HTRS resources

Total SDD area	~3x3=9 cm ²
Detector head	h=8, d=7 cm
Control electronics	30x20x20 cm
Remperature	-20 C
Cooler	Radiator
Bias voltage	150 V
Mass	25 kg
Power (at peak)	<100W

Courtesy of Jean Grady (NASA)

Conclusions

- \checkmark A dedicated high count instrument as the HTRS is needed for IXO
 - ✓ The HTRS will uniquely contribute to the core of the IXO science case "Matter under extreme conditions"
 - ✓ The HTRS is the only instrument, which matches the high count rate requirement (the throughput at 30 Crab is ~90%)
- ✓ The HTRS is modest in size and mass
 - ✓ ESA and NASA studies have shown that it can be accommodated and is not driving the mission at system level
- ✓ Its development study is currently being funded by the French Space Agency and by DLR/MPE