The International X-ray Observatory IXO

Nicholas White Arvind Parmar Hideyo Kunieda For the ESA-JAXA-NASA IXO Team

IXO Science Objectives

International X-ray Observatory [XO]

Black Hole growth and matter under extreme conditions

How do super-massive Black Holes grow and evolve?

What is the behavior of matter orbiting close to a Black Hole event horizons and does it follow the predictions of GR?

What is the equation of state of matter in Neutron Stars?

Galaxy Clusters, Galaxy Formation and Cosmic Feedback

What are the processes by which galaxy clusters evolve and how do clusters constrain the nature of Dark Matter and Dark Energy?

How does Cosmic Feedback work and influence galaxy formation?

Are the missing baryons in the local Universe in the Cosmic Web and if so, how were they heated and infused with metals?

The life cycles of matter and energy

How do supernovae explode and create the iron group elements? How do high energy processes affect planetary formation and habitability?

How are particles accelerated to extreme energies producing shocks, jets and cosmic rays?

Key Performance Requirements

Mirror Effective Area	3 m² @1.25 keV 0.65 m² @ 6 keV 150 cm² @ 30 keV	Black hole evolution, large scale structure, cosmic feedback, EOS Strong gravity, EOS Cosmic acceleration, strong gravity
Spectral Resolution/FOV E = 0.3 – 7 keV E = 0.3 –1 keV	ΔE = 2.5 eV within 2 arc min 10 eV within 5 arc min < 150 eV within 18 arc min E/ΔE = 3000 from with an area of 1,000 cm ²	Black Hole evolution, Large scale structure Missing baryons using tens of AGN
Mirror Angular Resolution	≤5 arc sec HPD <7 keV ≤30 arc sec HPD > 7 keV	Large scale structure, cosmic feedback, black hole evolution, missing baryons Black hole evolution
Count Rate	1 Crab with >90% throughput	Strong gravity, EOS
Polarimetry	1% MDP on 1 mCrab in 100 ksec (2 - 6 keV)	AGN geometry, strong gravity
Astrometry	1 arcsec at 3σ confidence	Black hole evolution
Absolute Timing	50 µsec	Neutron star studies

How do Supermassive Black Holes Grow and Evolve?

20 day exposure with Chandra will be a routine observation for IXO

Chandra and XMM-Newton deep fields reveal that super-massive Black Holes are common throughout the Universe and that X-ray observations are a powerful tracer of their evolution

Most of these sources have <30 detected X-ray counts even in 20-day ultradeep Xray surveys

IXO will greatly expand our view of the accretion light of the high-redshift Universe

IXO will bring a factor of 10 gain in telescope aperture combined with next generation instrument technology to realize a quantum leap in capability

How do AGN evolve at high redshift?

Chandra has detected X-ray emission from \sim 100 quasars at z > 4

Flux is beyond grasp of XMM-Newton and Chandra high resolution spectrometers, but well within the capabilities of IXO

X-ray spectra can give: redshifts! disk ionization constraint of L/L_{Edd}

Are the missing baryons in the local Universe in the Cosmic Web and if so, how were they heated and infused with metals?

40% of the Baryons in the local Universe are predicted to be caught in a hot plasma trapped in the warm-hot intergalactic medium (WHIM)

IXO will detect ionized gas in the hot IGM medium via OVII absorption lines in spectra of many background AGN to detect the missing Baryons and characterize them

How do relaxed clusters constrain Dark Energy?

Rapetti, Allen et al 2006 (Astro-ph/0608009)

- Using the gas mass fraction as a standard ruler measures f_{gas} to 5% (or better) for each of 500 galaxy clusters to give Ω_M =0.300±0.007, Ω_Λ =0.700±0.047
- Cluster X-ray properties combined with sub-mm data measure absolute cluster distances via the S-Z effect and cross-check f_{qas} results with similar accuracy
- Determining the evolution of the cluster mass function with redshift reveals the growth of structure and provides a powerful independent check

IXO: A future astrophysics great observatory

The two order of magnitude increase in capability of IXO is well matched to that of other large facilities planned for the next decade

Mission Payload

Flight Mirror Assembly (FMA)

• Highly nested grazing incidence optics

Spectroscopy Instruments

- X-ray Micro-calorimeter Spectrometer (XMS)
- X-ray Grating Spectrometer (XGS)

Imaging, Timing and Polarimetry Instruments

- Wide Field Imager (WFI) and Hard X-ray Imager (HXI)
- X-ray Polarimeter (XPOL)
- High Time Resolution Spectrometer (HTRS)

XMS, WFI/HXI, XPOL and HTRS observe one at a time by being inserted into focal plane via a Translating Instrument Platform

Effective area comparison

NASA Mission Design

- The observatory is deployed to achieve 20 m focal length
- Observatory Mass ~6100 kg (including 30% contingency)
- Launch on an Atlas V 551 or Ariane V
- Direct launch into an 800,000 km semi-major axis L2 orbit
- 5 year required lifetime, with expendables for 10 year goal

IXO Mission Studies

Separate ESA and NASA mission studies demonstrate overall mission feasibility, with no show stoppers

IXO X-ray Telescope

- Key requirements:
 - Effective area ~3 m² @ 1.25 keV
 - Angular Resolution <= 5 arc sec
- Single segmented optic with design optimized to minimize mass and maximize collecting area
 - Multilayers enhance hard X-ray response to 40 keV
- Two parallel technology approaches being pursued
 - ESA: Silicon micro-pore optics 3.8m diameter
 - NASA: Slumped glass 3.0m diameter
- Both making excellent progress
 - Already achieved 15 arc sec resolution, with further progress planned for this year
 - Slumped glass baselined for NuSTAR

AAS January 2009

esa Jaxa

NASA

IXO Study Team

IXO Study Coordination Group ESA Chair: A.N Parmar NASA Chair: N.E. White JAXA Chair: H. Kunieda

IXO Science Definition Team ESA Chair: X. Barcons (ES) NASA Chair: J. Bregman JAXA Chair: T. Ohashi IXO Instrument Working Group ESA Chair: P. de Korte (NL) NASA Chair: J. Nousek JAXA Chair: H. Tsunemi IXO Telescope Working Group ESA Chair: R. Willingale (UK) NASA Chair: R. Petre JAXA Chair: H. Kunieda

IXO Science Associates

IXO Study Coordination Group

Members	Europe	Japan	US
Study Scientists	Arvind Parmar (co-chair)	Hideyo Kunieda (co-chair)	Nick White (co-chair)
Study Managers	Philippe Gondoin	Tadayasu Dotani	Jean Grady
HQ Representatives	Fabio Favata	Tadayuki Takahashi	Michael Salamon
Agency appointed Community Scientists	Didier Barret (F)	Takeshi Tsuru	Mark Bautz
	Paul Nandra (UK)	Kazuhisa Mitsuda	Mitch Begelman
	Luigi Piro (I)	Takaya Ohashi	Jay Bookbinder
	Lothar Strüder (D)		Kathy Flanagan

Mailing List: ixo-scg@imperial.ac.uk

IXO Science Definition Team

ESA Appointed Members	NASA Appointed Members	JAXA Appointed Members		
Monique Arnaud (F)	Steve Allen	Shunji Kitamoto		
Xavier Barcons (ES, co-chair)	Neil Brandt	Kyoko Matsushita		
Hans Bohringer (D)	Joel Bregman (co-chair)	Takaya Ohashi (co-chair)		
Massimo Cappi (I)	Jack Hughes	Yuichi Terashima		
Andrea Comastri (I)	Christine Jones	Yoshihiro Ueda		
Andy Fabian (UK)	Jon Miller	Noriko Yamasaki		
Mariano Mendez (NL)	Rachel Osten			
Salvatore Sciortino (I)	Frits Paerels			
Jacco Vink (NL)	Chris Reynolds			
Mike Watson (UK)	Mike Shull			
Paul Nandra (UK, ex-offico)	Mitch Begelman (ex-officio)			
Secretaries: Mike Garcia, Ann Hornschemeier & Randall Smith				

Mailing List: ixo-sdt@imperial.ac.uk

IXO Instrument Working Group

European Members	U.S. Members	Japanese Members		
Didier Barret (F)	Mark Bautz (ex-officio)	Ryuichi Fujimoto		
Ronaldo Bellazzini (I)	Tom Buckler (ex-officio)	Motohide Kokubun		
Piet de Korte (NL, ESA co-chair)	Dave Burrows	Kiyoshi Hayashida		
Jan-Willem den Herder (NL)	Webster Cash	Kazuhisa Mitsuda		
Lionel Duband (F)	Tali Figueroa	Kazuhiro Nakazawa		
George Fraser (UK)	Ralf Heilmann	Tadayuki Takahashi		
Ian Hepburn (UK)	Kent Irwin	Hiroshi Tsunemi (co-chair)		
Andrew Holland (UK)	Ali Kashani			
Peter Lechner (D)	Rich Kelley			
Olivier Limousin (F)	Caroline Kilbourne			
Didier Martin (ESA, ex-officio)	Randy McEntaffer			
Luigi Piro (I)	John Nousek (co-chair)			
Claude Pigot (F)	Brian Ramsey			
Lothar Strüder (D, ex-efficio)	Rick Rothschild			
Mailing List: ixo-iwg@imperial.ac.uk				

IXO Telescope Working Group

European Members	U.S. Members	Japanese Members
Ladislav Andricek (D)	Steve Odell	Hisamitsu Awaki
Marcos Bavdaz (ESA)	Rob Petre (co-chair)	Manabu Ishida
Finn Christensen (DK)	Paul Reid	Hideyo Kunieda (co-chair)
Peter Friedrich (D)	Suzanne Romaine	Yoshimoto Maeda
Rene Hudec (CZ)	Mark Schattenburg	
Giovanni Pareschi (I)	Will Zhang	
Dick Willingale (UK, ESA appointed co-chair)	Jay Bookbinder (ex-officio)	

Mailing List: ixo-twg@imperial.ac.uk

IXO Science Associates

Around 300 IXO Science Associates worldwide who are:

- Considered part of the IXO science team and encouraged to work with the SDT to further refine the science case – contact one of the SDT chairs if you want to get involved!
- Regularly informed about developments in the project
- Invited to the science meetings
- To become a science associate contact one of the project scientists

Mailing List: ixo-sa@imperial.ac.uk

IXO Science Team Meeting GSFC 20-22 August 2008

IXO Science Team Meeting MPE 17-19 September 2008

Astro2010 Charge

- The Astro2010 committee will survey the field of space- and ground-based astronomy and astrophysics, recommending priorities for the most important scientific and technical activities of the decade 2010-2020.
- The principal goals of the study will be to carry out an assessment of activities in astronomy and astrophysics, including both new and previously identified concepts, and to prepare a concise report that will be addressed to the agencies supporting the field, the Congressional committees with jurisdiction over those agencies, and the scientific community.

[http://www.nationalacademies.org/astro2010]

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

Astro2010 Survey Committee (ASC)

Roger Blandford, Chair, Stanford University **Lynne Hillenbrand**, Executive Officer, California Institute of Technology

Subcommittee on Science

Martha P. Haynes, Vice Chair – Science Frontiers, Cornell University Lars Bildsten, University of California, Santa Barbara John E. Carlstrom, The University of Chicago Fiona A. Harrison, California Institute of Technology Timothy M. Heckman, Johns Hopkins University Jonathan I. Lunine, University of Arizona Juri Toomre, University of Colorado at Boulder Scott D. Tremaine, Institute for Advanced Study

Subcommittee on State of the Profession

John P. Huchra, Vice Chair – State of the Profession, Harvard-University Debra M. Elmegreen, Vassar College Joshua Frieman, Fermi National Accelerator Laboratory Robert C. Kennicutt, Jr., University of Cambridge Dan McCammon, University of Wisconsin-Madison Neil de Grasse Tyson, American Museum of Natural History

Subcommittee on Programs

Marcia J. Rieke, Vice Chair – Program Prioritization, University of Arizona
Steven J. Battel, Battel Engineering
Claire E. Max, University of California, Santa Cruz
Steven M. Ritz, NASA Goddard Space Flight Center
Michael S. Turner, The University of Chicago
Paul Adrian Vanden Bout, National Radio Astronomy Observatory
A. Thomas Young, Lockheed Martin Corporation [Retired]

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

Science Frontier Panels

Planetary Systems and Star Formation (PSF), Lee Hartmann

 Solar system bodies (other than the Sun) and extrasolar planets, debris disks, exobiology, formation of individual stars, protostellar and protoplanetary disks, molecular clouds and the cold ISM, dust, and astrochemistry.

Stars and Stellar Evolution (SSE), Roger Chevalier

 The Sun as a star, stellar astrophysics, structure and evolution of single and multiple stars, compact objects, supernovae, gamma-ray bursts and solar neutrinos. Extreme physics on stellar scales.

The Galactic Neighborhood (GAN), Mike Shull

 Structure and properties of nearby galaxies including the Milky Way and their stellar populations, interstellar media, star clusters. Evolution of stellar populations.

Galaxies across Cosmic Time (GCT), Meg Urry

 Formation and evolution of galaxies and galaxy clusters, active galactic nuclei and QSOs, mergers, star formation rate, gas accretion, global properties of galaxies and galaxy clusters, supermassive black holes.

Cosmology and Fundamental Physics (CFP), David Spergel

 Early universe, microwave background, reionization and galaxy formation up to virialization of protogalaxies. Large scale structure, intergalactic medium, determination of cosmological parameters, dark matter, dark energy. High energy physics using astronomical messengers, tests of gravity, physical constants as determined astronomically.

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

Programmatic Prioritization Panels

Radio, Millimeter and Submillimeter from the Ground (RMS)

 Observatories and telescopes that observe primarily in these wavebands

Optical and Infrared Astronomy from the Ground (OIR)

Observatories and telescopes that observe primarily in these wavebands

Electromagnetic Observations from Space (EOS).

• This will include all space-based astronomical projects observing the electromagnetic spectrum.

Particle Astrophysics and Gravitation (PAG)

 This will include all ground- and space-based projects exploring non-electromagnetic particles and gravitational radiation.

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

Astro2010 Timeline (provisional)

- December 5 2008 1st meeting ASC
- January 6, 2009 AAS town meeting, sessions
- January 9, 2009 2nd meeting ASC
- January 14 2009 Submission Deadline for Notices of Interest
- January 2009 1st meetings SFP, ISG; start town halls
- February 15 2009 Submission of Science White Papers
- May 4 2009 APS Town meeting, sessions
- May 11 2009 3rd meeting ASC; 1st meeting PPP
 - June 8 2009 AAS meeting, PPP workshops
 - September 2009 4th meeting ASC; SFP drafts, ISG data
 - October 2009 Cost-schedule-risk analysis, SFP review
 - **December 2009 PPP drafts, ASC recommendations**
 - ASC draft; PPP review
 - April 2010 ASC review
- July 2010

Report release and communication of content

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

January 2010

Decadal Key Dates

Science white papers due Feb 14, 2009

Mission implementation due April 2009

Mission presentations at June 8, close to AAS meeting in Pasadena

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

International X-ray Observatory [|XO]

171 NOIs

Science White Papers

- Address how understanding of astronomical frontiers may be advanced
- Should be addressed to one or more panels
- Multiple submissions allowed
- Identify critical questions and specific opportunities
- Theory, experiment and observation
- Scope of science panels is inclusive, connections to other areas of science are important
- Expecting submissions involving missions that are started or operating as these provide a context for future programs
- AAS Bulletin Boards a great way to organize collaborations on white papers
- 7pp; submit 9-15 Feb; public documents

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

Summary

IXO addresses key and timely questions confronting Astronomy and Astrophysics

IXO will bring a factor of ten gain in telescope aperture combined with next generation instrument technology to realize a quantum leap in capability

Separate studies by ESA and NASA demonstrate that the mission implementation for a 2020 launch is feasible with no major show stoppers

