The Wide Field Imager for the International X-ray Observatory

Lothar Strüder¹,², Peter Lechner¹,³ on behalf of the IXO-WFI consortium

1) Max-Planck-Institut für extraterrestrische Physik, 2) PNSensor GmbH, 3) MPI Heidelberg

Introduction

Since May 2008 the International X-ray Observatory (IXO) mission is under assessment as a joint European-Japanese-American unified vision of the previously independent projects MOS and Constellation-X with an interlinked launch date around 2020. IXO aims to study the high-energy universe with unprecedented sensitivity using large-area, high-resolution X-ray optics on a deployable optical bench and interchangeable complementary sensor systems. The focal plane instrumentation includes a micro-calorimeter, a wide field imager, a grating spectrometer, a hard X-ray camera, a high time resolution imaging spectrometer, and an X-ray polarimeter. For the Wide Field Imager (WFI) the key optics with large collecting area and good angular resolution, the wide band, the required high radiation tolerance and high-speed flexible readout have stimulated the development of a new detector. The baseline WFI is a monolithic, back-illuminated silicon Active Pixel Sensor based on the integrated detector-amplifier structure DePFET which unifies the science driven specifications in one device. A first prototype of devices is in compliance with the IXO specifications.

The DePFET principle

The DePFET (Depleted P-channel Field Effect Transistor) is an integrated detector-amplifier device. It consists of a p-channel FET on a n-type bulk that is fully depleted by a reverse biased backside biased diode. The applied voltage and deep implantations generate a local potential minimum for electrons under the channel. Signal electrons are collected in the “internal gate” and mediate the transistor current by inducing positive image charges in the p-channel, and the RET current is a function of the energy absorbed in the depleted volume.

The matrix arrangement of a number of DePFETs with common bulk and back contact results in an Active Pixel Sensor (APS) with:

- In-pixel signal storage and amplification,
- 100 % fill factor, no insensitive regions,
- Back-illumination through a homogenous thin entrance window,
- Scalable pixel size from 30 µm to 1 cm2,
- Low power, as the DePFET is only turned on for readout,
- Random accessible pixel size under flexible readout modes:
 - Sequential, CCD-like full frame mode,
 - Window mode with free selectable regions of interest,
 - Mixed mode, combined window & full frame mode,
- Fast timing mode, max. readout speed on a limited area with reduced energy resolution (e.g. 10 µs/channel, 16 x 16 pixels),

Column-parallel readout:

- Row-wise connection of control contacts (gate, clear, clear-gate),
- Column-wise connection of readout nodes, i.e. drain contacts,
- Global contacts (source, drain ring, substrate, back contact),
- Cyclic readout of rows,
- One active row with DePFETs turned on,
- Active row is selected optically through the pixel matrix,
- Other DePFETs turned off, still integrating signal,
- Integration time = (number of pixel rows) x (row processing time).

Prototype devices (Fig. 4) with 64 x 64 pixels, 75 x 75 µm pixel size, and 450 µm pixel thickness have been fabricated in a dedicated process technology including two poly-silicon layers and two metal layers and characterized at IDO-representative conditions at -60 °C with a readout speed of 2 pixels per second.

Process quality

- Leakage current level 10 nA/pixel @ Et (~ 100 µA/cm² @ ET),
- Offset and gain variations < 3 %, noise dispersion < 10 %,
- No dead or bright pixels.

Spectral resolution

- AE ≤ 126 eV @ 6 keV (FWHM) @ -60 °C,
- AE = 140 eV @ 2 keV (FWHM) @ 5.5 °C, -60 °C.

IXO Wide Field Image

The specifications of the IXO Wide Field Imager are driven by top-level scientific and technical boundary conditions:

- Field of view (fov) > 18 arcmin (@ f/20 lens width 20 m)
- Sensor dimension > 10 x 10 cm²
- 6' wide-field device with ‘round’ corners (Fig. 7),
- World’s largest monolithic X-ray imaging & spectroscopy sensor,
- Fov coverage: > 95.8 % @ 14 arcmin, > 90 % @ 20 arcmin,
- Angular resolution 5 arcsec (peak spread function 500 µm HEW)
- Pixel size 100 x 100 µm², 5 x oversampling of the HEW,
- In total = 1 million pixels,
- Energy range 100 eV – 15 keV
- Ultra-thin radiation entrance window for low energy,
- Full depletion means low noise,
- Photon flux (sampling area 3 mm² @ 1.25 keV, 3 mm² @ 6 keV)
- Parallel-bis-directional readout, 2048 readout channels,
- 2 pixel readout speed per pixel row, full frame rate 1000/sec,
- Raw data rate 2 GByte/sec
- Efficient in-built data reduction algorithm required,
- Bright point source observation
- Window mode with free selectable region of interest,
- Combination with hard energy X-ray camera
- Monolithic, dual technology
- Suspension mounting without mechanical support.

Readout sequence

A measurement of the DePFET current retrieves the signal information stored in the internal gate in a consecutive read-clear-read-sequence:

1. First current measurement: baseline + signal
2. Reset, i.e. removal of signal charges by closing clear and clear-gate,
3. Second current measurement: baseline

The signal amplitude is obtained from the current difference.

VELA readout chip (Politecnico di Milano)
- DePFET-specific development
- 64-channel parallel & filter-amplifier, 64/24 amplifier multiplexer
- Current (integrating) filter with trapezoidal weighting function,
- High dynamic range by current subtraction circuit
- Fast readout: 2 pixel processing time per pixel row (and even below),
- InDePFET: readout speed vs. equivalent noise charge,
- ENC = 4 e- @ 4 psec/√Hz
- ENC = 7 e- @ 1 µsec/√Hz

SWITCHER control chip
- DePFET-specific development
- 6-channel dual-output switching circuit,
- Supply of clocked analog voltages applied to gate, clear, clear-gate,
- High-voltage CMOS, switching amplitude ≥ 20 V
- Switching frequency ≥ 20 MHz,
- Data-convertable for the operation of large format APS.

Frontend Electronics

In a second production DePFET APS prototypes with representative large sensor formats have been processed (Fig. 5):

- 75 µm 12 pixels, 256 x 256 pixels, 1.92 x 1.92 cm² sensitive area,
- 75 µm 12 pixels, 256 x 128 pixels, 0.56 x 0.64 cm² sensitive area

Their characterization is in preparation with the intention to demonstrate the homogeneity of large scale devices and the technology readiness of the DePFET approach for IXO.

Next Steps

In a second production DePFET APS prototypes with representative large sensor formats have been processed (Fig. 5):

- 75 µm 12 pixels, 256 x 256 pixels, 1.92 x 1.92 cm² sensitive area,
- 75 µm 12 pixels, 256 x 128 pixels, 0.56 x 0.64 cm² sensitive area

They characterize in preparation with the intention to demonstrate the homogeneity of large scale devices and the technology readiness of the DePFET approach for IXO.

Summary

For the Wide Field Imager of the IXO mission we propose a wafer scale DePFET Active Pixel Sensor.

The DePFET concept unifies the science driven top level requirements of IXO in one device.

A dedicated process technology for the fabrication of DePFET APS has been successfully applied in several prototype runs.

- A DePFET-specific frontend electronics system of readout and control chips has been developed.

- A laboratory data acquisition system scalable for the operation of large sensor formats has been installed.

- The concept of the sensor and frontend electronics has been proven by 64 x 64 prototypes with performance figures in accordance with the requirements of the IXO mission.

- A new generation of sensors with significantly larger formats is available for the demonstration of the DePFET technology readiness.