Gravitational Waves from GRB

Peter Mészáros Pennsylvania State University

Mészáros gw03

GRB Sky & Temporal Distrib.

- Cosmological distrib. (isotr.) ~3500 bursts
- Out to $z \gtrsim 4.5$ (20?)
- ~ 1/day @ $z \leq few$
- ~ 2/3 "long" (t_γ >2s)
 - \rightarrow massive coll/SN?
 - ~50 afterglows well-id'd & localized in γ ,X,O,R, measured redshift; massive \star progenitor ~confirmed
- ~ 1/3 "short" (t_γ <2s)
- → NS mergers/mag? No afterglows so far, no ID,

only rough (deg) localizationprogenitor speculative.

GRB: Hyperaccreting Black Holes (leading paradigm)

Mészáros gw03

BH + accr. Torus) Jet

- Collapsar or merger →BH+accr.torus
- Nuclear density hot torus $\rightarrow \nu\nu \rightarrow e^{\pm}$
- Hot infall \rightarrow conv.
- Dynamo \rightarrow B~10¹⁵ G, twisted (thread BH?)
- $\rightarrow Alfvénic or e^{\pm}p\gamma jet$
- (Note: magnetar might do similar)

Ultra-relativistic, collimated jets: ?

- **3-D num. hydro** simulations (Aloy et al 00 ; Zhang, Woosley, McFadyen 02; Zhang, Woosley03)
- So far: Newt.SR, no MHD; jet first $v_h \leq c$, then $v_h \rightarrow c$ as in analyt. calc's \rightarrow OK
- Γ up to 150 \rightarrow OK
- KH instab: variable power output, var Γ
- Prelim (num) concl.: jets emerge only from $R_x \leq 10^{11}$ cm; (but larger stars not calculated num'ly);
- analyt. est. indicate larger stellar radii are possible (Meszaros, Rees 02, ApJ 556, L37)

γ-rays: Shocks in Fireball/Jet

SHOCKS IN RELATIVISTIC FIREBALL OUTFLOW: UNAVOIDABLE FACT OF LIFE Ejecta Shells W. Z velocities "Internal" shocks 13 "INTERNAL (CATCH-VP) SHOCK Progenitor Tsh.i External medium Sinan Ejecte "external" shock K (DECELERATION Reverse E shoet Frui -> Forward blast wave Rees & Meszaros 92, MNRAS, 258, P41 F. >> 1 94, APJ, 430, 193 ч Shi < Tsh de

- Shocks expected in any unsteady supersonic outflow (esp. in a nonvacuum environment)
- Internal shocks: fast shells catch up slower shells (unsteady flow)
- External Shock: flow slows down as plows into external medium
- NOTE: "external" and "internal" shocks might be expected both while jet is inside star, as well as after it is outside. Former: γ s do not escape; latter: they do.

Evidence for (collimated) Jets

- $\Gamma \propto t^{-3/8}$, but as long as $\theta_{casual} \sim \Gamma^{-1} < \theta_{jet}$, spherical expansion is good approx
- "see" jet edge at $\Gamma \sim \theta_{jet}^{-1}$
- Before, $F_{\nu} \propto (r/\Gamma)^2 \cdot I_{\nu}$
- After, $F_{\nu} \propto (r\theta_{jet})^2 . I_{\nu}$, steeper by $\Gamma^2 \propto t^{-3/4}$
- After $\Gamma < \theta_{jet}^{-1}$ also can start sideways expansion,
 - \rightarrow further steepen $F_{\nu} \propto t^{-p}$

Collimation vs. type

- Long bursts: "collapsars", massive stellar envelope provides transverse pressure for collimation.
 All jets so far are long bursts (but obs. select.); on avg long bursts brighter than short ones, log N-log S departs more from Euclidean
- Short bursts: could be (?) DNS mergers; no stellar envelope to collimate jet; on avg. are slightly fainter than long bursts, log N-log S closer to Euclidean → consistent with less collimation

"Shaped" jets

(Rossi, Lazzati& Rees '02; Zhang & Mészáros '02)

- Jets unlikely to be top-hats
- L(θ) [Γ(θ)?] ∝ θ⁻²
 "universal" beam also fits jet data
 - At high θ expect softer radiation
 - \rightarrow "XRF"s?,
 - "Orphan" afterglow?

GRB Progenitor Rates & Distances for 1 event/year

	Rate (avg)	Rate-rge	Dist (avg)	Dist-range
	Myr ⁻¹ gal ⁻¹	Myr ⁻¹ gal ⁻¹	Мрс	Мрс
DNS	1.2	0.01-80.	220	53-1100
BH-NS a	2.6	0.001-50	170	62-2300
BH-NS b	0.55	0.001-50	280	62-2300
BH-WD	0.15	0.0001-1	430	230-4900
BH-He	14	0.1-50	95	62-490
Collapsar	630	10-1000	27	23-110

(Data from Fryer etal, 99, ApJ 526,152; Belczynski etal, 02, ApJ 571,394)

Simple parametrized astrophysical GRB GW model: Shiho Kobayashi & P.M. In-spiral phase

• Inspiral of m_1 , m_2 (binaries): $h_c(f) = f |\hat{h}(f)|$: characteristic strain $<\rho^2>= 4 \int (|\hat{h}|^2/S_h) df = (2/5\pi^2d^2) \int df (1/f^2S_h)(dE/df)$ $dE/df = [(\pi G)^{2/3}/3] \mathcal{M}^{5/3} f^{-1/3}$: energy spectrum, $\mathcal{M} = (m_1 m_2)^{3/5}/(m_1 + m_2)^{1/5}$: chirp mass [Flanagan, Hughes 99] • $\rightarrow h_c(f) \sim (1/\pi d) [(G/10c^3)(dE/df)]^{1/2}$ $\sim 1.4 \ 10^{-21} (d/10 Mpc)^{-1} (\mathcal{M}/M_{\odot})^{5/6} (f/100 Hz)^{-1/6}$

Merger

- binary, or coll. blob in-spiral ends (for DNS/BH-WD-He) at $f_i \sim 10^3 (M/2.8 M_{\odot})^{-1}Hz / 0.1(M/M_{\odot})^{1/2} (I/10^9 cm)^{-3/2} Hz$
- Merger ends (quasi-normal ring I=m=2 starts) at f_q ~ F(a) c³/2π GM ~ 32 F(a) (M/M_☉)⁻¹ kHz

; [F(a)=1-0.63(1-a)^{3/10}]

- En. Radiated: $E_m = \epsilon_m (4\mu/M)^2 Mc^2$; $[\epsilon_m \sim 5\%, \mu = m_1 m_2/M]$
- $dE/df \sim E_m / (f_q f_i) \sim E_m / f_q$ (asume simple flat spectrum)
- $h_c (f) \sim (1/\pi d) [(G/10 c^3)(dE/df)]^{1/2}$ ~ 2 .7 .10⁻²² F(a) ^{-1/2} ($\epsilon_m /0.05$)^{1/2}(4 μ/M)(M/M_{\odot})(d/10Mpc)⁻¹

(e.g. Lai & Wiseman 96; Khanna etal 99; Flanagan & Hughes 98)

Bar / Dynamical Instabilities

- Bar mass m, length 2r, around BH mass m', rot. freq. $\omega = (Gm'/r^3)^{1/2}$
- Disk: dynamical instab. \rightarrow blob, mass m ${\rm \sim}\alpha {\rm M}_{\odot}$ around BH mass ~3-10 ${\rm M}_{\odot}$
- Both → similar expression , $h = (32/45)^{1/2} (G/c^4) (mr^2 \omega^2/d)$ $h_c \sim N^{1/2} h$ [N : # of cycles of approx. coherence ~10] ~2.10⁻²¹ (N/10)^{1/2} (mm'/M_☉²)(d/10Mpc)⁻¹ (r/10⁶ cm)⁻¹

(e.g. Fryer, Holz & Hughes 02)

Ring-down

- Deformed BH → damped oscillations, slowest mode: I=m=2 (also pref. excited)
- Spectrum peaks at $f_q \sim 32 F(a)(M/M_{\odot})^{-1} kHz$, width $\Delta f \sim \tau^{-1} \sim \pi f_q /Q(a)$; [Q(a)=2(1-a) -9/20]
- $dE/df \sim (E_r f^2 / 4 \pi^4 f_q^2 \tau^3)$. $.\{[(f-f_q)^2 + (2\pi\tau)^{-2}]^{-2} + [(f+f_q)^2 + (2\pi\tau)^{-2}]^{-2}\}$

(where $E_r = \epsilon_r (4 \ \mu/M)^2 Mc^2$, assumed $\epsilon_r = 0.01$ rad. en.)

• $h_c \sim 2.\ 10^{-21}\ (\epsilon_r\ /0.01)^2 (Q/14F)^{1/2} (\mu/M_{\odot})(d/10Mpc)^{-1}$

GRB Progenitor GW Signals: DNS

Kobayashi & Mészáros 03, ApJ(a-ph/0210211)

Dashed: LIGO II sensitivity

Double neutron star

Charact. Strain h_c D (avg) =220 Mpc, $m_1=m_2=1.4 M_{\odot}$, a=0.98, $\epsilon_m=0.05$, m=m'=2.8 M_{\odot}, N=10, $\epsilon_r=0.01$

Solid: inspiral; Dot-dash: merger; circle (bar inst); spike ring-down); shaded region: rate/distance uncertainty

GRB Progenitor GW Signals: BHNS

•Solid: inspiral; Dot-dash: merger; circle (bar inst); spike ring-down); shaded region: rate/dist uncertainty Dashed: LIGO II noise [f S_h(f)]^{1/2}

Black holeneutron star thin: d=170Mpc, $m_1 = 3.0 M_{\odot}, m_2 = 1.4 M_{\odot}$ m=0.5 M_{\odot} , m'=4 M_{\odot} thick: d=280Mpc, $m_1 = 12 M_{\odot}, m_2 = 1.4 M_{\odot}$ m=0.5 M_{\odot} , m'=13 M_{\odot} ; Both: a=0.98, ϵ_m =0.05, N=10, $\epsilon_r = 0.01$

Unpromising GRB/GW signals: **BH/WD,He**

- BH-WD: d=430 Mpc, m₁=10, m₂=0.1, a=0.98, ε_m=0.05; m=0.1, m'=10, N=10, ε_r=0.01
- **BH-He**: d=95 Mpc, m₁=3, m₂=0.4, a=0.98, ϵ_m =0.05; m=0.4, m'=3, N=10, ϵ_r =0.01

GRB Progenitor GW Signals: Collapsar

Dashed: LIGO II noise [f Sh(f)]1/2

Kobayashi & Mészáros 03, ApJ(a-ph/0210211)

Collapsar w. core breakup, bar inst. (optimistic numbers!) d=270 Mpc, $m_1 = m_2 = 1 M_{\odot}$, a=0.98, *ϵ*_m =0.05, merge at r=10⁷ cm; m=1 M_{\odot} , m'= 3 M_{\odot} , N=10, ϵ_r =0.01

Solid: inspiral; dot-dash: merger; circle :bar inst; spike: ring-down); shaded : rate/dist uncertainty

Detectability :

Binary progenitors: upper limits, in one year LIGO II

- BH-NS, NS-NS: waveform templates

 → matched filtering, esp. for in-spiral;
 S/N: ρ = [4 ∫ {ĥ(f)|² /S_h(f)} df]^{1/2} ≥ 5
 (where S_h (f): noise power of detector)
- PBHNS,insp (case a) ~ 13 (0.9,35) (𝒴/1.8M☉)^{5/6} (R/2.6 Myr⁻¹ g⁻¹)^{1/3}

 $\rho_{\text{BHNS,insp}}$ (case b) ~ 12 (1.5,54) ($M/3.2 \text{ M}_{\odot}$)^{5/6} (R/0.55 Myr⁻¹ g⁻¹)^{1/3}

Detectability :

Collapsars: upper limits, in one year LIGO II:

No templates (e.g. merger, ring-down):
 → use cross correlation of 2 det. output

[Finn et al, 99; Finn, Krishna & Sutton, astro-ph/0304228]

• $s_i(t) = h_i(t + n_i(t); n_i(t) = detector noise;$

[spatial coincidence made through arrival time correction];

signal weighted cross correlation : [G: filter function] $X_{on} \sim \int df \int df' \, \delta_T(f-f') \, \hat{s}_1^*(f) \, \hat{s}_2(f') \, \hat{G}(f')$

noise fluctuation cross correlation : $[T = gw - \gamma lag]$:

 $\sigma_{\text{off}} = \text{avg} [(n_1, n_2)^2]^{1/2} \sim C [(T/4) \int df / S^2 (|f|)]^{1/2}$ S/N : $\rho = X_{\text{on}} / \sigma_{\text{off}} \gtrsim 5$

• $\rho_{\text{Coll,merg}} \sim 3 (\epsilon_{\text{m}}/0.05) (\text{F[a]]}/0.8) (\text{T}/10 \text{ s})^{-1/2}$. $(\mu /0.5 \text{ M}_{\odot})^2 (\text{R}/630 \text{ Myr}^{-1} \text{ gal}^{-1})^{2/3}$

[Kobayashi & Mészáros 03, ApJ in press (astro-ph/0210211]

GW Polarization

Kobayashi & Mészáros 03, ApJL 585, L89

• $h^{TT} \propto [\nabla \nabla Y^{22}]^{TT}$ (transv. traceless comp.) $h_{\star} \propto (1 + \cos^2 \alpha), \quad h_{\star} \propto 2 \cos \alpha$ $h_i = \text{Re} \{ A_i \exp[-i\omega t] \},\$ where for I=m=2 mode $A_+ \propto (1+\cos^2 \theta)$, $A_x \propto 2i \cos \theta$ (α : angle resp. ang. mom; θ : viewing angle) Pol. Tensor $\rho_{ab} = \langle A_a A_b^* \rangle / \langle |A_+|^2 + |A_x|^2 \rangle =$ $=(1/2)(1+\xi_3 \xi_1-i\xi_2)$ $(\xi_1 + i\xi_2 - 1 - \xi_3)$ $\xi_1 = 0, \quad \xi_2 = f(\theta) \rightarrow \text{circular polarization},$ $\xi_3 = 2(1-\cos\theta)^2 (1+\cos\theta)^2 / [(1-\cos\theta)^4 + (1+\cos\theta)^4] \equiv P \rightarrow \text{lin. polariz.}$ **P~ 10⁻² (\theta /30 °)⁴ → degree of lin. polarization of GW** (while $L_{\gamma} \propto \theta^{-2} \rightarrow \gamma$ -ray lum. of long GRB (collapsar?))

Polarization Detectability

- Need 2 detectors with non-paralell arms
- At least S/N ρ ≥ P⁻¹ to detect linear pol. deg. P; (from num. sim. → need ρ =10 P⁻¹)
- Collapsar: $\rho \sim 16 \text{ (d/100 Mpc)}^{-1}$ \rightarrow optimal orientation, P=1% if d_{max} <3.5 Mpc
- But, 10³ grb/yr at <3 Gpc \rightarrow <d_{min} >~300 Mpc
- LIGO II sensit'y @ $f_0 \sim 150$ Hz : $[f_0 S(f_0)]^{1/2} \sim 3.10^{-23}$ Hz⁻¹, and $d_{max} \propto S_0^{-1/2}$; \rightarrow if future detector with $[f_0 S(f_0)]^{1/2} \sim 3.10^{-25}$ Hz⁻¹ \rightarrow may detect P~1% in 1 year

Kobayashi & Mészáros 03, ApJL 585, L89

Some GW-EM connections in GRB

- DNS/BHNS: good GW source, but weaker (less collimated) GRB
 expect "short" (<2 s) GRB, no (or weak) afterglow (?)
- Collapsar: weaker GW source, but strong and "long" (>2 s) GRB, with many EM afterglows observed
- GW for both may be detectable w. LIGO II (Kobayashi & Mészáros, ApJ

(a-ph/0210211)

- non-aligned jet obs. at $\Gamma \sim \theta_i^{-1}$, and $\Gamma \propto t^{-1/2}$
 - \rightarrow afterglow peaks at time $t_p \propto \theta^2$ after GW \rightarrow P $\propto t_p^2$
- XRFs: may be misaligned jets, \rightarrow preceded by GW, XR softness $\propto t_p^{1/2}$ (Kobayashi & Meszaros 03 ApJL 585, L89)
- Collapsar: BH of \neq ang. rot. rate "a" have \neq polar accr. rates,

and \neq polar infall turnaround times ("explosion"), \rightarrow predict \neq delays between GW and GRB as function of stellar mass & BH rotation rate a (e.g. for M_{*} = 40 M_{\odot}, t_{del} ~ 50, 60, 10⁴s for a=0.95, 0.75, 0

(Fryer & Mészáros 03 ApJL, a-ph/0303334)