Gravitational wave detectors and detection in the year 2012

Lee Samuel Finn
Center for Gravitational Wave Physics, Penn State
Goals and Outline

- Goal: anticipate spectrum of detector sensitivities when LISA becomes science operational

- Outline
 - Resonant Acoustic Detectors
 - Interferometers
 - Pulsar Timing Arrays
 - Conclusions
Resonant Acoustic Detectors

- How they work
- Where they’re going
Detecting Gravitational Waves: “Bar” Detectors

Auriga “Bar” Detector, Italy
Bar Detectors Worldwide

- ALLEGRO (USA)
- Nautilus (Italy)
- Explorer (Italy)
Principal technical challenge: *in situ* low-noise amplifiers

- On-resonance mechanical response larger than off-resonance response
- Ratio signal to (amplifier) noise larger for on resonance gravitational wave power than for off resonance power
- Leads to effective narrowing of response
- Current best sensitivity
 - $\sim 10^{-22}$ in 1 Hz bandwidth near 900 Hz

Measured strain noise spectral density of ALLEGRO and the various noise contributions which are predicted from the noise model of the detector.
- Measured total noise,
- antenna brownian,
- transducer brownian,
- transducer electrical loss,
- SQUID white noise,
- SQUID back action.
Spherical Detectors

• Why spherical? “Omni”:
 – Equal sensitivity to waves from any incident direction
 – Equal sensitivity to either wave polarization
 – Ability to discern incident wave polarization, direction

Kamerlingh Onnes Laboratory, Leiden University
“Dual” spheres for increased bandwidth

- Sphere inside a shell
 - Different resonant frequencies for inner sphere, outer shell

- Incident wave with characteristic frequency between resonant frequencies
 - Inner sphere, outer shell respond *out of phase*
 - Increased sensitivity in band between resonant frequencies

- Cf. Cerdonio et al., PRL 87 (2001) 082003
Interferometric Detectors

• How they work
• Where they’re going
Detecting Gravitational Waves: Laser Interferometry
LIGO: The Laser Interferometer Gravitational-wave Observatory

- United States effort funded by the National Science Foundation
- Two sites
 - Hanford, Washington & Livingston, Louisiana
- Construction from 1994-2000
- Commissioning from 2000 - 2002
- Operations: now!
Laser Interferometer Detectors Worldwide

- Virgo: Italy & France (3 Km arms)
- GEO: Germany & UK (600m arms)
- TAMA: Japan (300m arms)
What limits LIGO’s sensitivity?

• Initial LIGO detectors:
 – Different f, different limit
 – $< \sim 50\text{Hz}$: seismic noise
 – 50 - 200Hz: thermal noise
 – $> 200\text{Hz}$: “shot” noise

• Facility limits
 – Gravity gradients
 – Stray light
 – Residual gas
Building a better interferometer: Advanced LIGO

- Seismic isolation
- Thermal noise mitigation; high power optics
- High power lasers
- Tuning ifo response
High frequencies: improving photon counting statistics

- More photons, better statistics
 - Higher laser power
 - Greater light storage time in cavity
- Higher laser power
 - Initial LIGO: 6 W input to IFO
 - Advanced LIGO: 125 W input to IFO
- Greater light storage time
 - Initial LIGO: 0.84ms light storage time; 30 KW on test masses
 - Advanced LIGO: 5.0ms light storage time; 800 KW on test masses
Thermal noise contributions

- **Suspensions:**
 - kT energy in taut suspension wire violin modes

- **Test masses:**
 - Normal modes: kT energy in mirror modes
 - Thermoelastic: Temperature fluctuations and thermal expansion coefficient
Thermal noise mitigation: suspensions

- Noise proportional to mechanical losses: reduce losses
 - Initial LIGO: mirrors rest on cylindrical wires
 - Advanced LIGO: mirrors bonded to fused silica ribbons

- Coupling proportional to ratio wire/mirror mass
 - Initial LIGO: 11 Kg mass
 - Advanced LIGO: 40 Kg mass
Thermal noise mitigation: test masses

- Material properties problem
 - Normal modes:
 - Increase Young’s modulus: less motion for same thermal energy
 - Thermoelastic:
 - Decrease coefficient thermal expansion: less motion for same thermal fluctuations
 - Goal: single crystal sapphire
- Laser spot diameter, profile
 - Fluctuations averaged over effective spot area
 - Increase area, reduce effective fluctuation

- Initial LIGO: 25cm
- Advanced LIGO: 35cm
Seismic isolation

- Initial LIGO
 - Passive isolation: lossy springs
- Advanced LIGO
 - Active isolation
 - External hydraulic actuators
 - Suspension platform fine control
 - Multiple pendulum suspension
 - Mirrors at bottom of chain
 - Orientation forces applied at reaction masses
Sensitivity improvements: high power optics

- Radiation pressure: photons bouncing off mirrors
 - High power: high light pressure
- Mitigation: increased mirror mass
 - Smaller acceleration for same force
 - Initial LIGO: 11Kg
 - Advanced LIGO: 40Kg
Sensitivity improvements: high power optics

• More laser power, greater mirror heating
 – Differential heating changes mirror shape: “thermal lensing”
• Mitigation: bring face to constant temp.
 – Heat optic radiatively with suspended heating element
Tuning the detector response

- Undisturbed interferometer operates on dark fringe
 - Response to gravitational waves is light at output port
- Introduce partially reflecting mirror at output port
 - Make resonant cavity with rest of interferometer
 - Resonance enhances power at output port for excitation at resonant frequency
 - Higher power: lower shot noise
- Mitigate shot noise in narrow band
Advanced LIGO sensitivity goals
LISA: Laser Interferometer Space Antenna

• Three spacecraft in equilateral triangle configuration
 – 5x10^6 Km arm length
 – Solar orbit 20 deg behind Earth

• Constellation tracks changes in separation on

Courtesy Rutherford Appleton Laboratory, UK
LISA: critical technologies

- Space laser interferometry
 - Track fringes to establish separation changes with 10pm accuracy

- Inertial sensing
 - Sense deviations from inertial (geodesic) trajectories

- Micro-newton thrusters
 - Mitigate against deviations from inertial trajectories owing to, e.g., acceleration noise from solar wind
LISA technology tests

- ESA LISA Test Package (LTP), NASA Disturbance Reduction System (DRS)
 - Technology validation of space interferometry & inertial sensors, thrust technologies for drag-free flight
 - Flies on ESA SMART-2 August 2006
Conclusions, or What does this all mean?

- Ground-based “ifos” on-track for
 - Stochastic background sensitivity $\Omega h^2 < 10^{-9}$@ 100Hz
 - NS/NS binary inspiral sensitivity to ~ 400 Mpc
 - 2$x10$ M_{sol} BH/BH binary inspiral sensitivity to $z \sim 0.5$
 - Pulsars: $\varepsilon < 10^{-6}$@ 100 Hz, 10^{-7}@ 300 Hz, 10^{-8}@ 1 KHz in 1 yr

- Resonant acoustic detectors
 - Could be competitive in ~ 100Hz bandwidth near 1 KHz

- LISA
 - Stochastic background sensitivity $\Omega h^2 < 10^{-10}$ @ 0.01Hz
 - Sensitive to galactic binaries with orbital $f > 10^{-3.5}$ Hz
 - Massive ($> 10^3 M_{\text{sol}}$) black hole binary inspiral anywhere
 - Massive ($10^{4.5} M_{\text{sol}} < M < 10^7 M_{\text{sol}}$) black hole coalescence anywhere

Gravitational Wave Astronomy!

24 April 2003

Astrophysics of Gravitational Wave Sources