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Overview

• Numerical Relativity at UTB.

• The puncture approach.

• The LazEv Framework.

• Higher order finite-differencing.

• Stability issues with punctures.

• Headon collision results.

• Moving punctures, and QC0 results.

• Conclusion
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Motivation
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Numerical Relativity at UTB

• Goal: to obtain highly accurate BBH waveforms (critical for extracting
physics from LISA signals)

• Lazarus and the numerical to perturbative transition (gr-qc/0510122)

• Conformal thin-sandwich initial data (gr-qc/0505120 gr-qc/0502067)

• Post-Newtonian initial data (gr-qc/0207011)

• BSSN style numerical evolutions with punctures (gr-qc/0505055)
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Lazarus

• Consider the orbiting BBH problem as 3 different problems: inspiral,
merger, ringdown

• Solve each problem using tools most suited for that problem

• merge the solution together
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Nonlinear evolutions

• The LazEv framework (PRD 72 (2005) 024021, qr-qc/0505055)

• We use various flavors of BSSN

• Dynamical gauges

• Higher order finite differencing

• Puncture style evolutions

• Fisheye coordinates

• Radiative BCs
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The puncture approach

ψ = 1 +
∑ mi

2ri

• No excision with Singularity avoiding slicing

• No inner boundary conditions

• Physically motivated data

• Ideally suited for BSSN (φ can handle singular behavior analytically)
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Puncture vs. excision

• advantages

– Simpler to implement
– Don’t need to worry inner boundaries and excision inconsistencies
– Superior waveforms

• problems

– Can never resolve all features near the puncture
– May not have continuum limit
– Puncture induces high frequency features that can kill a run
– Fixing puncture position can lead to grid distortions that kill a run

7



How we handle puncture problems

• Reduce the differencing order near the puncture (higher-order → higher
error)

• upwinding – avoid differencing across the puncture

• corotation – reduce distortions due to fixed punctures

• What about moving punctures ?

• Can’t use KO dissipation near the punctures
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The LazEv Framework

• MOL integrator (RK2, RK3, RK4, ICN2)

• Mathematica scripts which convert PDEs to finite difference algorithms

• Supports arbitrary FD order

• Supports arbitrary FD stencils (e.g. upwinded, centered, mixed

• Quickly implement new evolution system as they become available

• Quickly implement new gauge conditions as they become available
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Higher order FD

• Why would you use higher order methods.

– Error scale as hn, computational expense as 1/h4. Break even at
fourth-order. Second-order (W/O FMR,AMR) is too expensive.

– Higher effective resolution for the same number of gridpoints.

• Problems and Alternatives

– Harder to stabilize
– More complicated boundaries.
– 2nd order AMR and FMR can produce better results at lower cost

(FishEye)
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Techniques

• Shift / No Shift (Gamma driver)

• Upwinding / no upwinding ([∂t − βi∂i]F = RHS)

• ‘LOR’ (2nd order evolution inside AH)

• Second-order upwinding (4th order unstable near punctures)

• Dissipation (Kreiss Oliger)
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BBH data

We evolved Brill Lindquist data for Headon collision of two equal mass,
non-spinning black holes.
We chose these data because:

• Symmetries allow us to evolve using 1 octant (cheap)

• No initial data solver required, and no ID error.

• Waveforms known from 2D codes, Lazarus, AEI 3d runs

• Can use published parameters for gauge conditions.
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BBH Waveforms
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Figure 1: (` = 2,m = 0)
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Figure 4: Rescaled constraint violation (ρ = 1 by 10−5, ρ = 2 by 16×10−5)
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QC0 via moving punctures
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QC0 results
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Erad =
∑

`,m

(r − 2M)2

16π

∫ tf

0

dt

[∫ t

0

C`,m(x)dx

] [∫ t

0

C̄`,m(x)dx

]

• h = Madm/24

• Mirr = .91Madm (approx)

• Cr = (.897, .9027)

• MH ' .972Madm

• a
MH

= .678 ± .008 (Lazarus: .7)

• Erad ' .026Madm (Lazarus 2.4% - 2.6%)
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Conclusion

• The LazEv framework allows for fast development of new codes based
on 3 + 1 decompositions.

• We obtained very accurate waveforms using puncture style BSSN
evolution with fourth-order stencils.

• We can evolve orbiting black holes using the puncture approach with
moving punctures.

• Future Work

– Explore QC sequence
– Evolve CTSP data
– Unequal mass mergers
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