Quasi-equilibrium binary black hole initial data

Harald P. Pfeiffer

California Institute of Technology

Collaborators: Greg Cook, Larry Kidder, Mark Scheel, Saul Teukolsky, James York

Numerical Relativity 2005, Goddard Space Flight Center, Nov 4, 2005

Outline:

- 1. Formalism & Numerics
- 2. Non-uniqueness in conformal thin sandwich
- 3. Properties of the constructed ID sets
- 4. Public initial data repository

Formalism & Numerics

H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

Quasi-equilibrium method

Basic idea:

Approx. time-independence in corotating frame Approx. helical Killing vector (both concepts essentially equivalent, both useful depending on context)

History:

- Wilson & Matthews 1985: Binary neutron stars
- Gourgoulhon, Grandclement & Bonazzola, 2002a,b BBH ID with inner boundary conditions basically right, but various deficiencies
- Cook & HP, 2002, 2003, 2004 (especially Cook & Pfeiffer, PRD 70, 104106, 2004) General quasi-equilibrium method with isolated horizon BCs

Quasi-equilibrium method (the easy pieces)

- Time-independence in corotating frame
 - \Rightarrow vanishing time derivatives

Quasi-equilibrium method (the easy pieces)

- Time-independence in corotating frame
 - \Rightarrow vanishing time derivatives
- Extented conformal thin sandwich formalism

$$\partial_t \tilde{g}_{ij} = 0 = \partial_t K$$

$$\tilde{\nabla}^2 \psi - \frac{1}{8} \tilde{R} \psi - \frac{1}{12} K^2 \psi^4 + \frac{1}{8} \tilde{A}_{ij} \tilde{A}^{ij} = 0$$
$$\tilde{\nabla}_j \left(\frac{\psi^6}{2N} \mathbb{L} \beta^{ij} \right) - \frac{2}{3} \psi^6 \tilde{\nabla}^i K - \tilde{\nabla}_j \left(\frac{\psi^6}{2N} \tilde{u}^{ij} \right) = 0$$
$$\tilde{\nabla}^2 (N\psi) - N\psi \left(\frac{1}{8} \tilde{R} + \frac{5}{12} K^2 \psi^4 + \frac{7}{8} \tilde{A}_{ij} \tilde{A}^{ij} \right) = -\psi^5 (\partial_t - \beta^k \partial_k) K$$

Quasi-equilibrium method (the easy pieces)

- Time-independence in corotating frame
 - \Rightarrow vanishing time derivatives
- Extented conformal thin sandwich formalism

$$\partial_t \tilde{g}_{ij} = 0 = \partial_t K$$

$$\tilde{\nabla}^2 \psi - \frac{1}{8} \tilde{R} \psi - \frac{1}{12} K^2 \psi^4 + \frac{1}{8} \tilde{A}_{ij} \tilde{A}^{ij} = 0$$

$$\tilde{\nabla}_j \left(\frac{\psi^6}{2N} \mathbb{L} \beta^{ij} \right) - \frac{2}{3} \psi^6 \tilde{\nabla}^i K - \tilde{\nabla}_j \left(\frac{\psi^6}{2N} \tilde{u}^{ij} \right) = 0$$

$$\tilde{\nabla}^2 (N\psi) - N\psi \left(\frac{1}{8} \tilde{R} + \frac{5}{12} K^2 \psi^4 + \frac{7}{8} \tilde{A}_{ij} \tilde{A}^{ij} \right) = -\psi^5 (\partial_t - \beta^k \partial_k) K$$

• Boundary conditions at infinity

$$\psi = 1$$

 $\beta^{i} = (\vec{\Omega}_{\text{orbital}} \times \vec{r})^{i}$
 $N = 1$

• New contribution: *inner boundary conditions* (next slides)

- Excise topological spheres S
- Require
 - 1. \mathcal{S} be apparent horizons
 - 2. The AH's remain stationary in evolution
 - 3. Shear of k^{μ} vanishes (isolated horizon)

 $\Rightarrow \mathcal{L}_k \theta = 0 \Rightarrow \mathsf{AH}$ moves along k^{μ} and M_{AH} initially constant

- Excise topological spheres S
- Require
 - 1. S be apparent horizons
 - 2. The AH's remain stationary in evolution
 - 3. Shear of k^{μ} vanishes (isolated horizon)

 $\Rightarrow \mathcal{L}_k \theta = 0 \Rightarrow$ AH moves along k^{μ} and M_{AH} initially constant

• **Rewrite** in conformal variables \Rightarrow | **BC's on** ψ and β^i

- Excise topological spheres S
- Require
 - 1. S be apparent horizons
 - 2. The AH's remain stationary in evolution
 - 3. Shear of k^{μ} vanishes (isolated horizon)

 $\Rightarrow \mathcal{L}_k \theta = 0 \Rightarrow$ AH moves along k^{μ} and M_{AH} initially constant

• **Rewrite** in conformal variables \Rightarrow | **BC's on** ψ and β^i

• General spin possible (
$$\rightarrow$$
 Greg Cook's talk)

- Excise topological spheres $\, \mathcal{S} \,$
- Require
 - 1. S be apparent horizons
 - 2. The AH's remain stationary in evolution
 - 3. Shear of k^{μ} vanishes (isolated horizon)

 $\Rightarrow \mathcal{L}_k \theta = 0 \Rightarrow \mathsf{AH}$ moves along k^{μ} and M_{AH} initially constant

• **Rewrite** in conformal variables \Rightarrow | **BC's on** ψ and β^i

• General spin possible (
$$\rightarrow$$
 Greg Cook's talk)

- One still must specify...
 - 1. Conformal metric \tilde{g}_{ij}
 - 2. Shape of excision surfaces \mathcal{S}
 - 3. Mean curvature K
 - 4. Lapse boundary condition

Expand solution in basis-functions & solve for expansion-coefficients

Expand solution in basis-functions & solve for expansion-coefficients Smooth solutions \Rightarrow exponential convergence

Expand solution in basis-functions & solve for expansion-coefficients Smooth solutions \Rightarrow exponential convergence

• Superior accuracy: Numerical errors << physical effects

Expand solution in basis-functions & solve for expansion-coefficients Smooth solutions \Rightarrow exponential convergence

- Superior accuracy: Numerical errors << physical effects
- Superior efficiency: Large parameter studies

Expand solution in basis-functions & solve for expansion-coefficients Smooth solutions \Rightarrow exponential convergence

- Superior accuracy: Numerical errors << physical effects
- Superior efficiency: Large parameter studies
- Domain decomposition: Nontrivial topologies & Multiple length-scales

Non-uniqueness

H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

Extended conformal thin sandwich equations

$$\begin{split} \tilde{g}_{ij} &= \delta_{ij} + \tilde{\mathcal{A}} h_{ij} \\ \partial_t \tilde{g}_{ij} &= \tilde{\mathcal{A}} \dot{h}_{ij} \\ K &= \partial_t K = 0 \\ (\text{perturbed flat space w/o inner b'dries}) \end{split}$$

H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

Extended conformal thin sandwich equations

$$egin{aligned} ilde{g}_{ij} &= \delta_{ij} + ilde{\mathcal{A}} h_{ij} \ \partial_t ilde{g}_{ij} &= ilde{\mathcal{A}} \dot{h}_{ij} \ K &= \partial_t K = 0 \ (\mbox{perturbed flat space w/o inner b'dries} \end{aligned}$$

Extended conformal thin sandwich equations

$$\partial_t \tilde{g}_{ij} = \tilde{\mathcal{A}} \dot{h}_{ij}$$

 $K = \partial_t K = 0$
(perturbed flat space w/o inner b'dries)

 $\tilde{g}_{ij} = \delta_{ij} + \tilde{\mathcal{A}} h_{ij}$

Apparent horizons exist for <u>small</u> \tilde{A} !

HP & York, 2005

Properties of QE-ID sets

H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

Corotating BBH solutions

Arbitrary choices: Conformal flatness, S = sphere. Gauge choices: K = 0, $\partial_n(N\psi) = 0$.

Sequences of quasi-circular orbits & ISCO

Towards evolving these ID

- ISCO and other diagnostics very promising
- But, ID only up to AH, whereas evolution codes excise inside AH
- Extrapolate data inward to $0.75r_{
 m AH}$
- Constraints violated for $r < r_{\rm AH}$
- The next slides highlight aspects of evolution which are relevant to ID

Hamiltonian Constraint

Evolution with fixed gauge – horizon motion

Same data as in Mark Scheel's talk – separation 10.

N and β^i are excellent initial gauge

Evolution with fixed gauge – horizon motion

Same data as in Mark Scheel's talk – separation 10.

Apparent horizon mass

Not all is well – Tidal distortions

Tidal distortions not captured correctly with current choices for \tilde{g}_{ij} and S— Work in progress —

Public ID repository

H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

Initial data repository

- http://www.tapir.caltech.edu/~harald/PublicID
- Equal mass BBHs in corotation
- Two choices for Lapse-BC Eq. (59a) or (59b) from Cook&HP, 2004

Initial data repository

- http://www.tapir.caltech.edu/~harald/PublicID
- Equal mass BBHs in corotation
- Two choices for Lapse-BC Eq. (59a) or (59b) from Cook&HP, 2004

Concentrate on Lapse-BC (59a) for uniformity

Initial data repository

- http://www.tapir.caltech.edu/~harald/PublicID
- Equal mass BBHs in corotation
- Two choices for Lapse-BC Eq. (59a) or (59b) from Cook&HP, 2004

Concentrate on Lapse-BC (59a) for uniformity

Using the public QE-BBH initial data

http://www.tapir.caltech.edu/~harald/PublicID

The web-site contains:

- Data sets, containing $g_{ij}, K_{ij}, N, \beta^i$ in **Cartesian** components
- Library to interpolate the data to any desired point (x, y, z) (as long as it is inside the covered computational domain)
- Example executable and example data-set (Schwarzschild in Kerr-Schild coordinates)

Summary

• Framework for BBH initial data in a kinematical setting (helical Killing vector)

• Advantages:

- 1. Agreement with PN
- 2. N>0, AH initially constant, $M_{
 m AH}$ exceedingly constant
- Tidal distortions not yet captured

• Data sets publicly available http://www.tapir.caltech.edu/~harald/PublicID

- 1. Compute waveforms!
- 2. Compare and validate evolution codes on the <u>same</u> initial data

Contents of a data set

- 1. The data in several resolutions (Lev2, ... Lev5), each in its own subdirectory
- 2. The file **Convergence** listing errors for each resolution:

	#N	Nor-Linf	Nor-L2	Ham-Linf	Ham-L2	Mom-Linf	Mom-L2	
	32.184	0.2280	0.03185	0.0339	0.00202	0.00552	0.000217	< Lev0
	46.447	0.0001337	2.452e-05	0.00333	0.000119	0.000461	1.03e-05	< Lev1
	60.706	4.361e-06	9.697e-07	0.000238	6.12e-06	2.80e-05	4.14e-07	< Lev2
	74.963	1.432e-07	3.253e-08	1.40e-05	2.71e-07	1.48e-06	1.62e-08	< Lev3
	89.219	4.855e-09	6.189e-10	7.38e-07	1.13e-08	6.98e-08	6.11e-10	< Lev4
	103.47	3.065e-10	1.267e-11	3.59e-08	4.45e-10	3.08e-09	2.24e-11	< Lev5
		~~~~~~	~~~~~~	~~~~~~	~~~~~~~	~~~~~~~	~~~~~~	
Change between this and			Hamilto					
next lower resolution			outside horizon					

### 3. The file AdmQuantitites listing some relevant quantities at each resolution

#N	J_ADM[2]	Sph-Exp-MAH	EADM_corr	
32.184	4.4323659273442	1.14349189174678	2.250487955424110	< Lev0
46.447	4.4405908812160	1.14359857991925	2.250608439097928	< Lev1
60.706	4.4405869341762	1.14360434438628	2.250628605804796	< Lev2
74.963	4.4405875539439	1.14360453955136	2.250630317404318	< Lev3
89.219	4.4405875462573	1.14360454280063	2.250630342690472	< Lev4
103.47	4.4405875503605	1.14360454285761	2.250630340509140	< Lev5

4. The file **Omega** containing the orbital angular frequency

### Interpolation Library – suggestions welcome!

• Library libSpECLibraryID.a (compiled with gcc 3.4.3 on RHE 9)

#### Header file PublicID.hpp:

#include <vector>

```
void ReleaseData(); // free memory
```

### • **Test-executable** InterpolateExample.cpp:

g++ InterpolateExample.cpp libSpECLibraryID.a -lblas