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Plan of the talk:
e The 3+1 split of the spacetime
e Important ingredients necessary for numerical evolutions
e Binary black holes & quasi-circular orbits
e Comoving coordinates
e Results from the first binary black hole orbit simulation

e Summary



The 341 Split of spacetime
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e Spacetime is foliated by t = const slices

e Einstein’s equations then split into evolution equations and constraint
equations

e [ he evolution equations tell us how to evolve forward in time, from one
slice to the next.

e [ he relation between fche coordinates on the different slices is described
by lapse a and shift g°.



Ingredients for numerical evolution

e as before:

Puncture initial data for two orbiting black holes

Modified BSSN evolution system (i.e. replace all undifferentiated [
by derivatives of the metric, subtract trace of A;; from A;; after each
ICN step)

Outer boundary of the shape of a ‘“lego sphere”, with Sommerfeld
type outer boundary conditions for all evolved quantities:
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Simple excision of the black holes inside the horizon (i.e. simply
copy time derivative at next interior point onto excision boundary)
extended to “lego spheres”

Singularity avoiding gauge (i.e. prevent slice from running into phys-
ical singularities)

e NEWw.

our BAM code uses fixed mesh refinement (FMR) for efficiency

comoving coordinates, which compensate for black hole orbital mo-
tion



About FMR in BAM

e 7 nested boxes around each * °
black hole . .

e For 48 points in z-direction: . .
— resolution between
2M and 0.03125M

— outer boundary at

R =48M . .

e 3D quadrant symmetry for . .
non-spinning equal mass
black holes

e AMR not needed, because we
use corotating coordinates

e ICN time stepping scheme
similar as in Carpet (Schnet-
ter, Hawley and Hawke
2003), but with lowered
Courant factor on coarser
grids, due to superluminal
corotation

= Runs can be done on a workstation!



Quasi-circular orbits

In principle, we want initial data, which represent a black hole binary
that has slowly been inspiraling already for a long time, due to the
emission of gravitational waves.

Post-Newtonian calculations predict that the black holes are moving on quasi-
circular orbits with slowly shrinking radius, i.e. there are the two timescales:
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= a comoving coordinate system exists in which .
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e we should be able to find a lapse a and shift ——
B* which realize these comoving coordinates, v —
so that the time evolution of the system is L Space
minimized. —
Questions:

e How fast do the black holes rotate?

e How fast do they drift toward each other?



Black hole puncture initial data, for quasi-circular orbits

e We use initial data from a binary black hole sequence (WT, B. Briigmann,
P. Laguna, 2003), which tells us the angular velocity €2 for circular orbits
at any given black hole separation.

masses normalized to M=1

-----------------------
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e \We choose initial data in the regime where numerical and post-Newtonian
predictions still agree.

e We focus on: Q2 =0.055/M < T, =114M and R=3M

e T he goal is to evolve for about one orbit, i.e. for at least 114M.



Gauge or coordinate choice for numerical evolution
e Initial lapse and shift: a =1, 3 =0

e Choose a singularity avoiding local gauge:

— "1+4l1o0g"” lapse:
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e T his local gauge works well for a single black hole, but it knows nothing
about the orbital motion and does not lead to comoving coordinates.

e With this alone the run crashes after ~ 8\ .
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e Since the black holes are in quasi-circular orbits, '_LQ*
comoving coordinates should exist in which time I
evolution is minimized. :>————>
e We should be able to shift 8¢ which realizes these %
comoving coordinates. | — Space




Global gauge choice - comoving coordinates

B x=0

e Add a comotion shift which counters the global rota- )\ 2
tion and also the drift of the two holes toward each |, 4
other, i.e. g — '+ 3.,,, With dt

L = V3 (Q2 x ) — AV,a']

e For point particles this would work perfectly.

x=0
How well does this work for black holes?

e \We have several parameters in the attenuation functions ¢ and A, which
determine the form of the shift near the black holes and also far away
(i.e. zero at puncture — rigid rotation far away).

e With our best choice of parameters and with 2 taken from our initial
data sequence:

— the apparent horizon stays near its initial location for a while, but
then starts drifting away

— the simulation lasts up to ~ 60M and dies when the apparent horizon
drifts too far



Using the lapse to find approximate black hole horizons

e When we use a "1+4log"” lapse, o is a good indicator of the location of
the black hole horizons:
apparent horizon is located roughly at o« = 0.3

e If we add the comotion shift:
Lapse near BH1 at t=7M

05 T T T

— initially the lapse o near the
black holes is quite symmetric

= initially the apparent horizon is
centered on excision region

— the run lasts up to ~ 60M and
dies when the lapse becomes
too asymmetric, i.e. when the
apparent horizon starts drift-
ing away
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e Note: excision was used here, but up to ~ 60M it is not needed
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Dynamically adjusted comoving coordinates

e Dynamically adjust €2 and V; in the comotion shift 8., = ¥ 73 [(2 x z)! — AV,

com

— Define the asymmetry in the lapse o by its ‘“‘center of mass”

di= ) (e, initial — )/ > o

rie exc. B. rie exc. B.

This asymmetry indicates if and in which direction the black hole is
moving.

— From time to time (every At = 2M) we change 2 and V. in G, by
AQ = Av/R AV, = Av,

where Av' is computed from the estimated coordinate distance d* by
which the black hole has moved with respect to our coordinates.

— We use a damped harmonic oscillator equation
AV = (—kd' — ~Oid") At
to compute the changes in the shift.

e Now we can evolve to around 125M, which is more than the orbital
timescale of T,,4,;; = 114 M, inferred from the initial data.
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Evolution of the shift

x- and y-components of the shift along the y-axis
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e sShift is dynamically adjusted in order to keep the BHs from moving with

respect to our coordinates

e |3.|: first increase, then slow decrease, then increase toward end

e 3,: first becomes positive, then negative again
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Apparent horizons and lapse after about one orbit
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Apparent Horizon and Lapse at Time T=114M
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orbital plane

e comoving coordinates keep the BHs centered at their initial coordinate
locations

e |location of apparent horizon is where a« ~ 0.3
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Residual motion of the apparent horizon

apparent horizon (AH) of one of the two black holes in the orbital plane
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e due to our comoving coordinates the AH and thus the black hole stays
more or less in place

e the coordinate size of the AH changes over time
e the AH shape becomes non-spherical in the chosen coordinates
e until the end of the simulation, no common apparent horizon was found
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Apparent horizon area and mass

Black hole binary
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e T he proper horizon area A and the black hole mass defined by
Mg = \/A/167w remain approximately constant during the evolution.

e Our evolution time is longer than one orbital period (as predicted by our
initial data sequence).

e \We obtain similar but shorter lived results without excision.
— excision seems OK
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Numerical accuracy and current limitations

Black hole binary » Black hole binary
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e [ he apparent horizon mass and area stay approximately constant. The
slow downward drift decreases for finer resolutions h.

e The ADM mass at infinity as estimated by assuming a Schwarzschild
background fluctuates on the order of 5%.

= Further improvements are needed before accurate gravitational waves
can be extracted.
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Summary

e We have found a dynamic gauge choice which for the first time allows
us to evolve a black hole binary for about one orbit.

e [ he initial separation is large enough to expect the black holes to really
orbit and not to just plunge toward each other.

e Until the end of our numerical simulation, no common apparent horizon
was found.

= Likely, the 2 black holes have not merged until then.

e It seems that the gauge alone was the ingredient necessary to achieve
this, even though there were many other suspects (such as: the BSSN
evolution system or inner and outer boundary conditions)

e Our dynamic gauge is far from perfect, since the apparent horizons still
drift around, which could be the reason for the crash in the end.
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END
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