Solving Einstein's equations using spectral methods

Mark A. Scheel
California Institute of Technology
Collaborators: Lawrence E. Kidder (Cornell), Lee Lindblom (Caltech), Rob Owen (Caltech), Harald P. Pfeiffer (Caltech), Saul A. Teukolsky (Cornell)

Outline:

1. Numerical methods: pseudospectral multidomain evolution.
2. Binary black hole evolutions using the KST formulation.
3. A new generalized harmonic formulation.

I. Numerical Methods:
 Pseudospectral Multidomain Evolution

Use pseudospectral discretization

- Write solution as sum of N basis functions $\phi_{k}(x): \quad u(x, t)=\sum_{k=0}^{\infty} \tilde{u}_{k}(t) \phi_{k}(x)$.

Use pseudospectral discretization

- Write solution as sum of N basis functions $\phi_{k}(x): \quad u^{(N)}(x, t)=\sum_{k=0}^{N-1} \tilde{u}_{k}(t) \phi_{k}(x)$.
- For smooth $u(x, t)$, error $\sim e^{-N}$.

Use pseudospectral discretization

- Write solution as sum of N basis functions $\phi_{k}(x): \quad u^{(N)}(x, t)=\sum_{k=0}^{N-1} \tilde{u}_{k}(t) \phi_{k}(x)$.
- For smooth $u(x, t)$, error $\sim e^{-N}$.
- Construct discrete inverse transform: $\quad \tilde{u}_{k}(t)=\sum_{n=0}^{N-1} w_{n} u^{(N)}\left(x_{n}, t\right) \phi_{k}\left(x_{n}\right)$.
- Requires careful choice of collocation points $\left\{x_{n}\right\}$.
- Can transform at will (with no error!) between $u^{(N)}\left(x_{n}, t\right)$ and $\tilde{u}_{k}(t)$.

Use pseudospectral discretization

- Write solution as sum of N basis functions $\phi_{k}(x): \quad u^{(N)}(x, t)=\sum_{k=0}^{N-1} \tilde{u}_{k}(t) \phi_{k}(x)$.
- For smooth $u(x, t)$, error $\sim e^{-N}$.
- Construct discrete inverse transform: $\quad \tilde{u}_{k}(t)=\sum_{n=0}^{N-1} w_{n} u^{(N)}\left(x_{n}, t\right) \phi_{k}\left(x_{n}\right)$.
- Requires careful choice of collocation points $\left\{x_{n}\right\}$.
- Can transform at will (with no error!) between $u^{(N)}\left(x_{n}, t\right)$ and $\tilde{u}_{k}(t)$.
- To solve nonlinear hyperbolic PDEs:
- Compute derivatives in spectral space.
- Compute nonlinear terms in physical space.
- Time integration via method of lines.
- Boundary conditions imposed analytically on characteristic fields (so excision is trivial).

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of

- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$

Characteristic decomposition

- Einstein evolution equations written in first-order hyperbolic form.
- Hyperbolicity guarantees complete set of
- characteristic fields $u^{\hat{\alpha}}$
- characteristic speeds $v_{(\hat{\alpha})}$
- Boundary conditions required on all incoming ($v_{(\hat{\alpha})}<0$) characteristic fields.

Domain decomposition

- Spectral domain must be mapped to simple shape.

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.
- Subdomains evolve 'independently'
\Rightarrow Natural parallelism

Domain decomposition

- Spectral domain must be mapped to simple shape.
- For multiple holes, use multiple subdomains.
- Subdomains evolve 'independently'
\Rightarrow Natural parallelism

- Boundary conditions: fill ingoing characteristic fields from neighbor.

Domain decomposition

- 54 subdomains:
- 2 inner spherical shells (1 per BH)
- 43 rectangular subdomains.
- 6 subdomains $=1$ 'cubed sphere'
- 3 outer spheres (to $r_{\text {max }}=320 M_{B H}$)

II. Binary Black Holes using KST

KST evolution: Basic setup

- Evolution: Free evolution, KST formulation.

Kidder,Scheel,Teukolsky PRD 64, 064017 (2001)

- Initial Data: QE Conformal Thin Sandwich (See Harald Pfeiffer's talk)
- sep_10.00_59a.tgz from http://www.tapir.caltech.edu/~harald/PublicID
- Orbital period $156 M_{B H}$
- Boundary Conditions:
- No boundary condition at horizons (none needed!)
- Constant-incoming-characteristic-BCs (like Sommerfeld) at $r=320 M_{B H}$.
- Gauge Conditions:
- Initial data gives lapse, shift in corotating frame.
- Shift and densitized lapse held constant in time.

KST evolution: Psi4

- Movie of $\left|\Psi_{4}\right|$.

KST evolution: Constraint errors

KST evolution: Constraint errors

Apparent horizon (coord) location

KST evolution: Shift adjustment

- Purpose: Keep all AHs at constant coordinate locations.
- To implement near each hole:
- Set $\beta^{i}=\beta_{\text {initial }}^{i}+\delta r_{A H}(\theta, \varphi) f(r)\left(x^{i} / r\right)$
- Choose $f(r)$ so adjustment falls off away from hole.
- Apply adjustment every $\delta t_{\text {adjust }}=0.5 M_{B H}$.

KST evolution: Constraint errors

KST evolution: Constraint errors

III. A New Generalized Harmonic Formulation

First-order generalized harmonic system

- Motivation:
- Wish to reproduce Frans Pretorius' impressive generalized harmonic results.
- Basic idea of generalized harmonic:
\rightarrow New gauge fields H_{μ} defined by $\square x^{\mu}=\Gamma^{\mu \alpha}{ }_{\alpha} \equiv H^{\mu}$
\rightarrow Only constraint is $\mathscr{C}_{\mu} \equiv H_{\mu}-\Gamma_{\mu \alpha}{ }^{\alpha}$
\rightarrow Wave equations for 4-metric $g_{\mu v}$.

First-order generalized harmonic system

- Motivation:
- Wish to reproduce Frans Pretorius' impressive generalized harmonic results.
- Basic idea of generalized harmonic:
\rightarrow New gauge fields H_{μ} defined by $\square x^{\mu}=\Gamma^{\mu \alpha}{ }_{\alpha} \equiv H^{\mu}$
\rightarrow Only constraint is $\mathscr{C}_{\mu} \equiv H_{\mu}-\Gamma_{\mu \alpha}{ }^{\alpha}$
\rightarrow Wave equations for 4-metric $g_{\mu v}$.
- Mathematical understanding (and our code!) is better developed for first-order systems of equations. So construct first order system:

First-order generalized harmonic system

- Motivation:
- Wish to reproduce Frans Pretorius' impressive generalized harmonic results.
- Basic idea of generalized harmonic:
\rightarrow New gauge fields H_{μ} defined by $\square x^{\mu}=\Gamma^{\mu \alpha}{ }_{\alpha} \equiv H^{\mu}$
\rightarrow Only constraint is $\mathscr{C}_{\mu} \equiv H_{\mu}-\Gamma_{\mu \alpha}{ }^{\alpha}$
\rightarrow Wave equations for 4-metric $g_{\mu \nu}$.
- Mathematical understanding (and our code!) is better developed for first-order systems of equations. So construct first order system:
- Define variables as in Kashif Alvi's (2002) system:

$$
\begin{aligned}
g_{\alpha \beta} & \equiv 4-\text { metric } \\
\Phi_{k \alpha \beta} & \equiv \partial_{k} g_{\alpha \beta} \\
\Pi_{\alpha \beta} & \equiv N^{-1}\left(\partial_{t}-N^{k} \partial_{k}\right) g_{\alpha \beta}
\end{aligned}
$$

- $\Phi_{k \alpha \beta}$ variable introduces additional constraint: $\partial_{k} g_{\alpha \beta}-\Phi_{k \alpha \beta} \equiv \mathscr{C}_{k i j}=0$.

1st order generalized harmonic equations

- Multiples of constraints are added to evolution equations:

$$
\begin{array}{cl}
\partial_{t} g_{\alpha \beta}-\left(1+\gamma_{1}\right) N^{k} \partial_{k} g_{\alpha \beta} & =-N \Pi_{\alpha \beta}-\gamma_{1} N^{k} \Phi_{k \alpha \beta} \\
\partial_{t} \Phi_{j \alpha \beta} & =\ldots+\gamma_{2} N \mathscr{C}_{j \alpha \beta} \\
\partial_{t} \Pi_{\alpha \beta} & =\cdots+\gamma_{0} N Q_{\alpha \beta}^{\mu} \mathscr{C}_{\mu}+\gamma_{1} \gamma_{2} N^{k} \mathscr{C}_{k \alpha \beta}
\end{array}
$$

1st order generalized harmonic equations

- Multiples of constraints are added to evolution equations:

$$
\begin{array}{cl}
\partial_{t} g_{\alpha \beta}-\left(1+\gamma_{1}\right) N^{k} \partial_{k} g_{\alpha \beta} & =-N \Pi_{\alpha \beta}-\gamma_{1} N^{k} \Phi_{k \alpha \beta} \\
\partial_{t} \Phi_{j \alpha \beta} & =\cdots+\gamma_{2} N \mathscr{C}_{j \alpha \beta} \\
\partial_{t} \Pi_{\alpha \beta} & =\cdots+\gamma_{0} N Q_{\alpha \beta}^{\mu} \mathscr{C}_{\mu}+\gamma_{1} \gamma_{2} N^{k} \mathscr{C}_{k \alpha \beta}
\end{array}
$$

- γ_{0} damps gauge constraint \mathscr{C}_{μ} (same damping term Frans uses).

1st order generalized harmonic equations

- Multiples of constraints are added to evolution equations:

$$
\begin{array}{cl}
\partial_{t} g_{\alpha \beta}-\left(1+\gamma_{1}\right) N^{k} \partial_{k} g_{\alpha \beta} & =-N \Pi_{\alpha \beta}-\gamma_{1} N^{k} \Phi_{k \alpha \beta} \\
\partial_{t} \Phi_{j \alpha \beta} & =\ldots+\gamma_{2} N \mathscr{C}_{j \alpha \beta} \\
\partial_{t} \Pi_{\alpha \beta} & =\ldots+\gamma_{0} N Q_{\alpha \beta}^{\mu} \mathscr{C}_{\mu}+\gamma_{1} \gamma_{2} N^{k} \mathscr{C}_{k \alpha \beta}
\end{array}
$$

- γ_{0} damps gauge constraint \mathscr{C}_{μ} (same damping term Frans uses).
- γ_{2} damps $\partial_{k} g_{\alpha \beta}-\Phi_{k \alpha \beta} \equiv \mathscr{C}_{k \alpha \beta}$ constraint.

1st order generalized harmonic equations

- Multiples of constraints are added to evolution equations:

$$
\begin{array}{cl}
\partial_{t} g_{\alpha \beta}-\left(1+\gamma_{1}\right) N^{k} \partial_{k} g_{\alpha \beta} & =-N \Pi_{\alpha \beta}-\gamma_{1} N^{k} \Phi_{k \alpha \beta} \\
\partial_{t} \Phi_{j \alpha \beta} & =\ldots+\gamma_{2} N \mathscr{C}_{j \alpha \beta} \\
\partial_{t} \Pi_{\alpha \beta} & =\cdots+\gamma_{0} N Q_{\alpha \beta}^{\mu} \mathscr{C}_{\mu}+\gamma_{1} \gamma_{2} N^{k} \mathscr{C}_{k \alpha \beta}
\end{array}
$$

- γ_{0} damps gauge constraint \mathscr{C}_{μ} (same damping term Frans uses).
- γ_{2} damps $\partial_{k} g_{\alpha \beta}-\Phi_{k \alpha \beta} \equiv \mathscr{C}_{k \alpha \beta}$ constraint.
- γ_{1} controls shocks: (linear degeneracy for $\gamma_{1}=-1$).

1st order generalized harmonic equations

- Multiples of constraints are added to evolution equations:

$$
\begin{array}{cl}
\partial_{t} g_{\alpha \beta}-\left(1+\gamma_{1}\right) N^{k} \partial_{k} g_{\alpha \beta} & =-N \Pi_{\alpha \beta}-\gamma_{1} N^{k} \Phi_{k \alpha \beta} \\
\partial_{t} \Phi_{j \alpha \beta} & =\cdots+\gamma_{2} N \mathscr{C}_{j \alpha \beta} \\
\partial_{t} \Pi_{\alpha \beta} & =\cdots+\gamma_{0} N Q_{\alpha \beta}^{\mu} \mathscr{C}_{\mu}+\gamma_{1} \gamma_{2} N^{k} \mathscr{C}_{k \alpha \beta}
\end{array}
$$

- γ_{0} damps gauge constraint \mathscr{C}_{μ} (same damping term Frans uses).
- γ_{2} damps $\partial_{k} g_{\alpha \beta}-\Phi_{k \alpha \beta} \equiv \mathscr{C}_{k \alpha \beta}$ constraint.
- γ_{1} controls shocks: (linear degeneracy for $\gamma_{1}=-1$).
- Evolution equations symmetric hyperbolic for all γ_{0}, γ_{1} and γ_{2}.
- Constraint propagation equations symmetric hyperbolic for all γ_{0}, γ_{1} and γ_{2}.

Constraint damping

- Single Schwarzschild BH in 3D.
- Spherical shell domain, inner boundary $1.8 M$, outer boundary $11.8 M$
- Standard (Sommerfeld-like) outer boundary conditions.

Improved boundary conditions

- We have constructed constraint-preserving and no-incoming-Weyl BCs.
- Example: Schwarzschild with gravitational wave injected through boundary.
- Domain = two concentric shells, outer boundary 23.6M.

Improved boundary conditions

- $\left|\Psi_{4}\right|$ extracted at outer boundary $(r=23.6 M)$

Corotation problem?

- Flat space (!) in spherical shell of outer radius R.
- Coordinate system rotating at frequency Ω.
- KST system does not have this problem.

Summary

- Pseudospectral multidomain evolutions efficient.
- KST Binary evolution still has gauge and constraint problems. Future work:
- Constraint projection.
- Better gauge conditions (driver or elliptic).
- New 1st-order Generalized Harmonic promising.
- Constraint damping parameters work well.
- Constraint-preserving BCs effective.
- Must solve corotation problem. (or move the holes?)

KST BBH blowup independent of domain decomposition

