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Quasi-circular binary black hole sequences
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Unigrid simulations I
Numerical evolutions of the Cook-Baumgarte quasi-circular sequence (QC-0: L =
4.99M to QC-4: L = 7.84M .
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Unigrid simulations I
Numerical evolutions of the Cook-Baumgarte quasi-circular sequence (QC-0: L =
4.99M to QC-4: L = 7.84M .
Ingredients in the numerical code:

• BSSN evolution system, 1+log slicing and Γ-driver shift + an additional co-
rotating shift to keep the black holes in place.

• Second order spatial finite differencing and a 3-step iterative Crank-Nicholson
time evolution scheme. For each model dx = 0.08M and dx = 0.06M . For
QC-0 additionally dx = 0.048M

• “Lego-excision” with the “simple excision” boundary treatment.

• Sommerfeld out-going radiation boundary condition. Due to the constraint
violation introduced by this boundary condtion we use a “fish-eye” coordinate
transformation to push the boundaries far enough out, that the horizon region is
causally disconnected from the boundaries at time of common horizon formation.

• Apperent-, event- and isolated-horizon analysis.
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Unigrid simulations II
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Unigrid simulations III

Initial values: MADM = 1.01 and (J/M2)ADM = 0.779.

dx 0.080 0.060 0.048

a/m 0.450± 0.021 0.572± 0.025 0.632± 0.028
Mirr 0.947 0.933 0.923

MAH 0.973± 0.003 0.978± 0.005 0.980± 0.006
Jrad (%) 45.3± 2.9 29.6± 3.7 22.1± 4.5
Erad (%) 3.61± 0.25 3.12± 0.45 2.97± 0.59
TAH 15.72 16.53 17.11

Lazarus results (Baker et. al. 2001, 2002): Erad = 3% and

Jrad = 12%
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FMR (Carpet)
Basic grid setup:

• 8 levels of refinement.

• Rotating quadrant symmetry.

• Boundaries at 96M .

• Resolution on finest grid 0.025M .

• Fourth order finite differencing (except

shift advection terms).

• RK3 time integrator.

• 3rd order prolongation in space.

• 2nd order prolongation in time.

• Fixed size excision region.
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New gauge parameter
Lapse:

∂tα = −2αψn(K −K0).
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∂tB
i = ∂tΓ̃i−αpηBi.

Drift correct:

The time derivative of the shift is

adjusted dynamically based on the

motion of the centroid of the apparent

horizon.

The angular and radial adjustments

are independently controlled by damped

harmonic oscillators where parameters

determine the damping time scales.

Gauge choice 1: n = 4, η = 2, p = 4, m = 1 and k = 2.

Gauge choice 2: n = 0, η = 4, p = 1, m = 1 and k = 2.
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The battle of the gauges
For Tichy-Brügmann sequence (D = 3.0)
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The battle of the gauges II

How can different gauges give so

different results?

Remember that Brügmann et. al

evolved this data set for more than

140M without finding a common

apparent horizon.

Can the results be reconciled?

To investigate this we decided

to perform several runs for each

gauge parameter set with different

resolutions.
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Convergence
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Convergence II
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Convergence III

We assume that the properdistance as a function of time and

resolution is given by:

D(∆, t) = D(0, t) + a(t)∆2 + b(t)∆3.

Then given runs at 3 different resolutions, ∆1, ∆2, ∆3, we get:

D(∆1, t) = D(0, t) + a(t)∆2
1 + b(t)∆3

1,

D(∆2, t) = D(0, t) + a(t)∆2
2 + b(t)∆3

2,

D(∆3, t) = D(0, t) + a(t)∆2
3 + b(t)∆3

3,

which can be solved for D(0, t), a(t) and b(t).
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Convergence IV
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Improving the gauge

We realized that the damping

timescale for the drift correction

was not chosen optimally.

Recently Ryoji has experimented

with different damping timescales

(critical- or overdamping).
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Improving the gauge
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Conclusions

• We have shown that even though 2 somewhat different gauge choices at a given
resolution may give very different answers they actually do converge to the same
result.
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Conclusions

• We have shown that even though 2 somewhat different gauge choices at a given
resolution may give very different answers they actually do converge to the same
result.

• The data set from Brügmann et. al (2004) has been confirmed to actually
perform more than an orbit before merger.

• The resolution requirements are rather high. To reach less than 1% errors in the
properdistance we would need M/200 resolution. However, this can be improved
with improved gauges and using full fourth order finite differencing.

• We plan to revisit the QC sequence in order to map out the transition from
plunge to orbit.

• We need to improve our wave extraction techniques to be able to handle our
drift-correct shift.

• We need to get a better understanding of the new gauge parameter.
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