next up previous
Next: About this document ... Up: Enhancing the capabilities of Previous: References

Bibliography

1
D. Sigg and the LIGO Scientific Collaboration.
Status of the LIGO detectors.
Classical and Quantum Gravity, 25(11):114041-+, June 2008.

2
LIGO Scientific Collaboration.
LIGO detector noise curves during the S5 run.

http://www.ligo.caltech.edu/docs/G/G060009-03/
, 2007.

3
Acernese, F. et al.
Classical and Quantum Gravity, 23:S63, 2006.

4
Lück, H. et al.
Classical and Quantum Gravity, 23:S71, 2006.

5
F. Beauville et al.
Benefits of joint LIGO - Virgo coincidence searches for burst and inspiral signals.
Journal of Physics Conference Series, 32:212-222, March 2006.

6
Abbott B. et al.
Detector description and performance for the first coincidence observations between LIGO and GEO.
Nuclear Instruments and Methods in Physics Research A, 517:154-179, January 2004.

7
S. Waldman R. Adhikari, P. Fritschel.
Enhanced LIGO.
2006.
LIGO technical document T060156.

8
http://www.astro.cf.ac.uk/geo/advligo/.

9
Warren G. Anderson, Patrick R. Brady, Jolien D. E. Creighton, and Eanna E. Flanagan.
An excess power statistic for detection of burst sources of gravitational radiation.
Phys. Rev., D63:042003, 2001.

10
S. K. Chatterji.
The search for gravitational wave bursts in data from the second LIGO science run.
PhD thesis, Massachusetts Institute of Technology, 2005.

11
A. K. Jain, M. N. Murty, and P. J. Flynn.
Data clustering: a review.
ACM Comput. Surv., 31(3):264-323, 1999.

12
Shourov Chatterji, Lindy Blackburn, Gregory Martin, and Erik Katsavounidis.
Multiresolution techniques for the detection of gravitational-wave bursts.
Class. Quantum Grav., 21:S1809-S1818, 2004.

13
D. Dewey.
Analysis of gravity wave antenna signals with matched filter techniques.
pages 581-590, 1986.

14
J. Makhoul.
Linear Prediction: A Tutorial Review.
63:561-580, 1975.

15
M. V. van der Sluys, C. Röver, A. Stroeer, V. Raymond, I. Mandel, N. Christensen, V. Kalogera, R. Meyer, and A. Vecchio.
Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries.
Astrophysics Letters, 688:L61-L64, December 2008.

16
M. van der Sluys, V. Raymond, I. Mandel, C. Röver, N. Christensen, V. Kalogera, R. Meyer, and A. Vecchio.
Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo.
Classical and Quantum Gravity, 25(18):184011-+, September 2008.

17
R. Gouaty and for the LIGO Scientific Collaboration.
Detection confidence tests for burst and inspiral candidate events.
Classical and Quantum Gravity, 25(18):184006-+, September 2008.

18
B. Abbott et al.
Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals.
Phys. Rev. D, 78(4):042002-+, August 2008.

19
T. Baumgarte, P. R. Brady, J. D. E. Creighton, L. Lehner, F. Pretorius, and R. Devoe.
Learning about compact binary merger: The interplay between numerical relativity and gravitational-wave astronomy.
Phys. Rev. D, 77(8):084009-+, April 2008.

20
T. Z. Summerscales, A. Burrows, L. S. Finn, and C. D. Ott.
Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse Supernovae.
Astrophysics, 678:1142-1157, May 2008.

21
C. D Ott.
TOPICAL REVIEW: The gravitational-wave signature of core-collapse supernovae.
Classical and Quantum Gravity, 26(6):063001-+, March 2009.

22
H. Dimmelmeier, C. D. Ott, A. Marek, and H.-T. Janka.
Gravitational wave burst signal from core collapse of rotating stars.
Phys. Rev. D, 78(6):064056-+, September 2008.

23
Martin Ester et al.
A density-based algorithm for discovering clusters in large spatial databases with noise.
In KDD-96 Proceedings, pages 226-231, 1996.

24
Tapas Kanungo et al.
An efficient k-means clustering algorithm: Analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell., 24(7):881-892, 2002.

25
L. R. Tang, H. Lei, S. Mukherjee, and S. Mohanty.
Cluster analysis of simulated gravitational wave triggers using S-means and constrained validation clustering.
Classical and Quantum Gravity, 25(18):184023-+, September 2008.

26
S. Krishnamachari and M. Abdel-Mottaleb.
Hierarchical clustering algorithm for fast image retrieval.
In M. M. Yeung, B.-L. Yeo, and C. A. Bouman, editors, Proc. SPIE Vol. 3656, p. 427-435, Storage and Retrieval for Image and Video Databases VII, Minerva M. Yeung; Boon-Lock Yeo; Charles A. Bouman; Eds., pages 427-435, December 1998.

27
P. Kalmus et al.
Search method for unmodeled transient gravitational waves associated with SGR flares.
Class. Quant. Grav., 24:S659-S669, 2007.

28
B. Abbott et al.
Search for Gravitational-Wave Bursts from Soft Gamma Repeaters.
Phys. Rev. L, 101(21):211102-+, November 2008.

29
B Abbott et al.
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm.
LIGO Document Control Center, P090024, 2009.

30
B Abbott et al.
Search for gravitational-wave bursts in the first year of the fifth LIGO science run.
LIGO Document Control Center, P080056, 2009.

31
J. Sylvestre.
Time-frequency detection algorithm for gravitational wave bursts.
Phys. Rev. D, 66(10):102004-+, November 2002.

32
R. Honda et al.
Astrophysically motivated time frequency clustering for burst gravitational wave search: application to TAMA300 data.
Classical and Quantum Gravity, 25(18):184035-+, September 2008.

33
S. Klimenko, I. Yakushin, M. Rakhmanov, and G. Mitselmakher.
Performance of the WaveBurst algorithm on LIGO data.
Classical and Quantum Gravity, 21:1685-+, October 2004.


Rubab Khan 2015-06-02