
Gravitational Effects
and the

Motion of Stars

Problems: 2.18 3.3 3.6 3.12 3.13
due Feb 22.

Test 1 March 10



On the largest scales (galaxy clusters and larger), 
strong evidence that the dark matter has to be 
non-baryonic: 

●Abundances of light elements (hydrogen, helium and 
lithium) formed in the Big Bang depend on how many 
baryons (protons + neutrons) there were. 

●light element abundances + theory allow a measurement 
of the number of baryons 

●observations of dark matter in galaxy clusters suggest 
there is too much dark matter for it all to be baryons, 
must be largely non-baryonic. 

On galaxy scales no such simple argument exists. 
Individual types of dark matter can be constrained 
using various indirect arguments, but only direct probe 
is via gravitational lensing.



Dark Matter Candidates

● Many candidates for dark matter. 
– Dark Baryons

● Brown dwarfs?
● MaCHO's (Massive Compact Halo Objects)
● Astronomer sized rocks?
● Black Holes?

– Non-baryonic (exotic particles)
● WIMPS (Weakly Interacting Massive Particles)



● Photons are affected by gravitational fields and thus 
background objects can be distorted if there is a massive 
object in the line of sight

● If a star passes a massive body it will aquire a transverse 
velocity V

⊥
. 

● This transverse velocity can be show to be (see Section 3.2.2 
eqn. 3.49) 

Gravitational Lensing

V=2
GM
bV



The angle that the mass is deflected is: =2
GM
bV2

For a photon v=c and general relativity predicts that:

=4
GM
bc2

=
2Rs

b

R
s
 is known as the Schwarzchild radius and for a solar

mass object is about 3 km.

Note: the deflection angle is derived for weak encounters
so b >>R

s
:

implies that α is small (in radians)



For a background object at a distance of d
s
 from the 

Observer O and a point mass (the lens L) is at a distance d
L
.  

The Observer sees and image (I) of the source S' at an angle 

Θ  from the line of sight to the lens.



If d
s
 >> y, then  β≈y/d

s
, α≈(x-y)/d

LS 
and
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s
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So now the equation for the apparent position becomes:

2−−E
2=0 With solutions:

±=
1
2
±24E
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If  is 0 (lens and source are exactly aligned) the we 
see a ring of light (an Einstein ring) with radius 

E
 .

If   > 0 then we see two images, one inside 
E
 and 

one outside 
E
.  



Strong Lensing

This is a case where the lens is massive enough to bend
light through a “large” angle.



Strong lensing usually requires a lens with mass about that
of a galaxy. Since galaxies are not point sources and have 
internal structure real lenses are more complex than our
example. 

What happens if you do have only a solar mass for the lens.
Assume that we are observing a star in the Galactic bulge
and a solar mass star passes between us and the source.

dS=8kpc,dL=dLS=4kpc

E= 4GMdLS

c2dLdS

=5×10−9radians=10−3arcsec

This angle is too small to measure directly even with HST 



What happens if L is not stationary?
If we are observing a star as the lens L passes across
out line-of-sight the star brightens when the 
alignment is within 

E
 and then fades as the 

alignment is lost. 



● Strong effect for <
E
. Sources can be magnified my a 

factor of ~10 (2.5 mag) or more.

● Because the alignment must be so precise this is a very 
rare event, P<10-6.

● Now routinely observed toward the Galactic bulge and 
the Magallanic clouds.



Motion under Gravity

Newtons law of gravity tells us that two masses attract
each other with a force

d
dt

m v =−GmM
r3

r

If we have a collection of masses acting on a mass 
m


 the force is

d
dt

m v=−∑


GmM

∣x−x∣
3
x−x , ≠



x =−∑


Gm

∣x−x∣
, for x≠x

d
dt

m v =−m∇x ,

with

Is the gravitational potential. If we can approximate
the discrete stellar distribution with a continuous
distribution .

x =−∫Gx '
∣x−x '∣

d3x '



So the force per unit mass is 

F x =−∇x =∫Gx '
x−x '
∣x−x∣3

d3x '

∇2x =−∇2∫Gx '
∣x−x '∣

d3x '

=4Gx 

To get the differential form we start with the definition
of  and applying ∇2 to both sides

we get Poisson's equation.



In the absence of external forces a star will conserve
energy along its orbit

v⋅ d
dt

m v =−m v⋅∇x  ,

v⋅ d
dt

m v m v⋅∇x =0

But since 
d
dt

=v⋅∇x 

d
dt

[m
2
v2mx ]=0

This is just the     KE    +     PE



As a body moves far from the mass then

x  0

So to escape from the gravitational pull a star must have
a velocity greater than

v 22x 

The escape velocity is set so that v at infinity is 0 so

v esc=−2x 



In addition a stars angular momentum changes 
according to

d L
d t

=x× m
d v
d t

=− m x×∇



Virial Theorem

2 〈KE 〉〈PE 〉=0

2 〈KE 〉〈PE 〉∑


F×x=0

Isolated system

In General 

Used to estimate masses
Determine stability
Star formation ...



Scattering and 2 Body 
Encounters

r
s

v
∗

For a strong encounter

GmM
r

mv2

2

Solving for r

rrs≡
2Gm

v2

For m=0.5 M
sun

, v = 30 km/s then r
s
 = 1au



How frequently can we expect such an encounter?
To answer this we must look at the volume of space
that the star sweeps out in a time t.

Vol=rs
2 vt

What is the time before the 1st encounter is the star is
moving through a galaxy where the stellar density is n?

nrs
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For the solar neighborhood n≈0.1 pc-3 and v ~ 30 km/s
so that t

s
 ~ 1015 yrs. Since the age of the universe is 

only 1.3x1010 yrs this isn't a real worry for the sun. 

What is the density required to have at least one 
strong encounter in the age of the universe?

    n≈few x 105 pc-3 

we see these densities in dense globular clusters and 
in the cores of galaxies. 



Weak Encounters

What keeps spiral
galaxies disk-like?



As we discussed last time

Now we know the force on the object m as it passes
M

m

F= GmM b

 b 2v 2 t 23 / 2
=M

d v
d t

If we integrate this
over the time of the 
encounter

V = 1
M
∫F d t= 2G m

b v



For a weak encounter b >> r
s
, the strong encounter 

radius. 

That is for one weak encounter but as the star orbits
the galaxy there will be many of the encounter so what
is the cumulative effect?
We need to add each V in quadrature e.g.
<V>  = (v
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and instead of summing we'll integrate 
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Solve this for t to find out how long it takes for a star
for a star to acquire a V about the same magnitude
as its original velocity. 

t relax=
v 3

8G 2 m 2 n l n 
=

t s

2 l n 

So as a star moves around the galaxy it keeps getting
perterbed and this does not allow gravitational 
clumping (this isn't the whole story but more later).  



t relax=
2×1 09

l n 
 v
1 0k m / s


3

 m
M s u n


−2

 n

1 03 p c−3

−1

y rs

We can write t
relax

 in terms of more friendly units

The only tricky bit is how do we determine ?

Near the sun b
min

≈1AU and 300pc <b
max

<3x104 pc

1 pc is 206,256 AU   

so 18 > ln > 22

Near the sun t
relax

≈1013 yrs so the sun acts

as if it is alone in the galaxy. 

What about a globular cluster?



T
relax

≈0.5 x1010 yrs

so we have to be
aware of the 
encounters when
calculating orbits.



We've talked about two types of relaxation processes
but both take a long time, a significant fraction of the
age of the universe. So how did objects (elliptical 
galaxies and globular clusters) get to be so smooth?

Violent relaxation!

During the early phases of collapse densities can 
rise to large values and many strong encounters can 
happen in a short time.





Effects of strong encounters

● Two outcomes
– Can form a binary star system
– Kick one of the stars out of the system

● This leads to 
– Core collapse 
– Blue Stragglers 

● Two stars coalesce into a single star too 
bright, too blue, and too massive to be on the 
MS 



● Millisecond pulsars
– One star in a binary is a neutron star and 

mass transfer from the normal star spins 
up the neutron star

● Evaporation
– Continuing encounters kick low mass 

stars out of the cluster
● Implies mass segregation – more massive stars 

should be in the center

● Data shows that all of these effects are 
present in GC's





Isothermal Sphere

r =
2

2Gr2

To model the radial distribution of stars in a GC
we use the isothermal sphere, its isothermal because
the velocity dispersion, , is the same throughout

This fits the outer part of a globular cluster but 
clearly as r→0 the density →∞ which is not observed!



To eliminate the singularity at the center lets first 
redefine our variables

 '=

0

r '= r
r0

and where 

r0≡92r2

2G

r
0
 is the radius where the projected density falls to 

½ the central value. This radius is the King radius and
is often called the core radius. 






