

Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

Presented by: Matthew R. Bolcar NASA Goddard Space Flight Center

ATLAST Technology Development Team:

M. R. Bolcar, K. Balasubramanian, M. Clampin, J. Crooke, L. Feinberg, M. Postman, M. Quijada, B. J. Rauscher, D. Redding, S. Shaklan, H. P. Stahl, C. Stahle, H. Thronson

What is ATLAST?

- Mission concept study for a large UV-Optical-Infrared space telescope ("LUVOIR")
- Multiple engineering reference designs being explored by a multi-institutional team
 - See: N. Rioux, "A future large-aperture UVOIR space observatory: reference designs", paper 9602-4
- Similar in scope to AURA's High Definition Space Telescope (HDST)

What is ATLAST?

- "ATLAST", "LUVOIR", "HDST" are all *mostly* interchangeable
- LUVOIR: defined in NASA Astrophysics 30-year roadmap
 - Architecture is non-specific
- HDST: see: From Cosmic Birth to Living Earths Tuesday, Aug. 11, 8:00 pm – 10:00 pm Marriot Marquis, Marina E

Advocates for a large segmented aperture

- **ATLAST:** multiple architectures being considered
 - Has engineering reference designs for segmented and monolithic systems
- All have very similar science goals

ATLAST Science

- Detect and characterize a statistically significant population of habitable exoplanets
 - Discover dozens of exoEarths
 - Look for, and potentially confirm, presence of life
 - Observe general planet populations for comparative studies
- Perform a broad array of UVOIR general astrophysics:
 - Galaxy, star, and planet formation
 - Flow of material between galaxies
 - Observations within our own solar system
- ATLAST's science portfolio is very similar to that outlined in AURA's *From Cosmic Birth to Living Earths* report

Top-Level System Requirements

Par	rameter	Requirement	Stretch Goal	Traceability
Primary N	lirror Aperture	≥ 8 meters	12 meters	Resolution, Sensitivity, Exoplanet Yield
Telescope	e Temperature	273 K – 293 K	-	Complexity, Fabrication, Integration & Test, Contamination, IR Sensitivity
	UV	100 nm– 300 nm	90 nm – 300 nm	-
Telescop Wavelength Coverage Image Quality	Visible	300 nm – 950 nm	-	-
	NIR	950 nm – 1.8 μm	950 nm – 2.5 μm	-
	MIR	Sensitivity to 5.0 µm	-	Transit Spectroscopy
Image	UV	300 nm – 950 nm 950 nm – 1.8 μm Sensitivity to 5.0 μm < 0.20 arcsec at 150 nm Diffraction-limited at 500 nm	-	-
Quality	Vis/NIR/MIR	Diffraction-limited at 500 nm	-	-
Str	ay Light	Zodi-limited between 400 nm – 1.8 μm	Zodi-limited between 200 nm – 2.5 μm	Exoplanet Imaging & Spectroscopy SNR
Wavefron	t Error Stability	< 10 pm RMS uncorrected system WFE per control step	-	Starlight Suppression via Internal Coronagraph
Dointing	Spacecraft	≤ 1 milli-arcsec	-	-
Pointing	mary Mirror Aperture≥ 8 meterslescope Temperature273 K - 293 Klescope Temperature273 K - 293 Kength rageUV100 nm- 300 nmVisible300 nm - 950 nmNIR950 nm - 1.8 µmMIRSensitivity to 5.0 µmge lityUV< 0.20 arcsec at 150 nm	-	-	

Technology Development for ATLAST

- Our team identified 5 key technology areas to enable the ATLAST mission:
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large aperture systems
 - Detectors
 - Mirror Coatings

Assumptions

- Assume a new mission start circa 2024
 - Technologies must be TRL 5 by this time
 - Technology development plan must be credible in time for 2020 Decadal Survey
- Assume flexibility with respect to ATLAST architecture
 - Explore multiple solutions at this early stage of development
 - i.e. develop for both monolithic and segmented apertures, develop both internal coronagraphs and starshades, etc.
- Adopt a conservative approach in identifying gaps
 - This a systems-level problem: every technology impacts every other
 - Requires detailed integrated design cycles
 - For now, assume conservatively and refine as technologies develop and modeling is performed

Technologies

Internal Coronagraph

- Instrument internal to the observatory that suppresses the on-axis starlight
- Nimble: allows the observation of many planetary systems in a fixed mission lifetime
 - Dozens of exoEarths predicted with reasonable assumptions¹

- Impose stringent wavefront stability requirements on the telescope
- Limited inner-working angle at long wavelengths
 - Difficult to observe some biosignature spectral features in the NIR

⁹⁶⁰²⁻⁸ ¹Stark, et al., "Maximizing the ExoEarth Candidate Yield from a Future Direct Imaging Mission", ApJ, **795** (2014) ⁹

Internal Coronagraph	Parameter	Need	Capability	Current TRL
	Raw Contrast	1×10 ⁻¹⁰ (detect) 5×10 ⁻¹⁰ (char.)	3.2×10 ⁻¹⁰	
Broadband High-Contrast Coronagraph includes Wavefront Sensing & Control (WFSC)	IWA	3.6 λ/D (detect) 2.0 λ/D (char.)	3 λ/D	
	OWA	~ 64 λ/D	16 λ/D	3
	Bandpass	10-20% (instantaneous) 400 nm – 1.8 μm (total) 200 nm – 2.5 μm (goal)	10%	
	Aperture	Obscured, segmented	Unobscured	
	WFSC	Fast, low-order, at stellar photon rates	Slow, tip/tilt, bright lab source	
	Actuator count	128×128 (continuous) >3000 (segmented)	64×64 (continuous) <200 (segmented)	
Deformable Mirrors	Environmental	Robust, rad. hard	Testing underway	3
Deformable Mirrors	Electronics	>16 bits, high-throughput	~16 bit, dense cabling	
Autonomous Onboard	Bandwidth	Closed-loop > a few Hz	Human-in-the-loop	2
Computation	Electronics	Rad. hard, >100 GFLOPS/W	<20 GFLOPS/W	3
Starlight Suppression 9602-8 Image Processing	PSF Calibration	Factor of 50-100× improvement in contrast	25× demonstrated 30× goal for WFIRST	3 10

Starshade

- Separate spacecraft that flies in formation with telescope to block incoming starlight
- Not nimble: long slew times between observations limits the exoplanet yield for a fixed mission lifetime

- No special requirements imposed on telescope
- Inner working angle is independent of wavelength or telescope diameter

Starshade	Parameter	Need	Capability	Current TRL
Starshade Construction and Deployment	_	Petal and central truss design consistent with an 80-m class starshade Demonstrate manufacturing and deployment tolerances	Demonstrated prototype petal for 40-m class starshade Demonstrated deployment tolerances with a 12-m Astromesh antenna with 4 petals	3
	Edge radius	≤ 1 µm	≥ 10 µm	
Optical Edges	Reflectivity	≤ 10%	-	3
	Stowed radius	≤ 1.5 m	-	
	Lateral sensing error	≤ 20 cm	-	
Formation Flight	Peak-to-peak control	< 1 m	-	3
	Centroid estimation	≤ 0.3% of optical resolution	≥ 1%	
Contrast Performance Demonstration and Model Validation		1×10 ⁻¹⁰ broadband contrast at Fresnel numbers ≤ 50	3×10 ⁻¹⁰ contrast, excluding petal edges, narrowband, at Fresnel number of ~500	3
Starshade Propulsion & Refueling 9602-8	-	Propulsion & refueling to enable > 500 slews during 3 years of a 5-year mission	Requires study; robotic refueling appears feasible	3 12

Ultra-stable Large Aperture Telescopes

- Provide wavefront stability for an internal coronagraph
- Incorporates entire optical system:
 - Mirrors
 - Structure
 - Thermal control system
 - Vibration isolation system
 - Metrology & Actuators

Ultra-stable Large Aperture Telescopes	Parameter	Need	Capability	Current TRL		
	Areal Density	< 36 kg/m² (Delta IVH) < 500 kg/m² (SLS)	~12 kg/m ² (SiC) ~35 kg/m ² (ULE) ~70 kg/m ² (JWST)			
	Areal Cost	< \$2 M/m²	~\$6 M/m² (JWST)			
Mirrors	Areal Production Rate	30-50 m²/year	~4 m ² /year (JWST) ~1 m ² /year (HST) ~100-300 m ² /year planned by TMT but not yet demonstrated	4		
	Moisture Expansion	Zero after initial moisture release	Continuous moisture release			
Stable Structures	Lurch	< 10 pm / wavefront control step	Micro-lurch at joint interfaces	3		
Stable Structures	Metrology	High-speed picometer metrology to validate performance	Nanometer speckle interferometry on JWST			
Thermal Stability	Material Stability	~10 nm/K	~100 nm/K	3		
Disturbance Isolation System	End-to-end Attenuation	140 dB at frequencies > 20 Hz	80 dB at frequencies > 40 Hz (JWST passive isolator only)	4		
Motrology & Actuators	Sensing Accuracy	~1 pm	~1 nm	Λ		
9602-8	Control Accuracy	~1 pm	~5 nm	4 14		

Detectors

Need improvements to enable and enhance exoplanet science

 Better UV science enabled by improvements in sensitivity and format

• See:

B. Rauscher, "Detector requirements for coronagraphic biosignature characterization", paper 9602-12

Detectors	Parameter	Need	Capability	Current TRL	
	Bandwidth	400 nm – 1.8 μm (2.5 μm goal)	EMCCD is promising, need		
	Read Noise	<< 1 e ⁻	radhard testing, has hard cutoff at 1.1 um:		
Visible-NIR Single-photon	Dark Current	< 0.001 e ⁻ /pix/s	HgCdTe APDs good for NIR	3-5	
Exoplanet Science	Spurious Count Rate	Small compared to dark current	but need better dark current; MKID & TES meet requirements but require	55	
	Quantum Eff.	> 80% over bandwidth	cryo ops.		
	Format	> 2k × 2k			
UV Single-photon Detectors	Bandwidth	200 nm – 400 nm			
	Read Noise	<< 1 e ⁻	EBCMOS and MCP detectors		
	Dark Current	< 0.001 e ⁻ /pix/s	need better quantum eff., and improvements in		
for Enhanced Exoplanet Science	Spurious Count Rate	Small compared to dark current	lifetime;	2-4	
	Quantum Eff.	> 50% over bandwidth	apply here		
	Format	> 2k × 2k			
	Bandwidth	90 nm – 300 nm	Same as above;		
Large-Format High-Sensitivity UV Detectors for General	Read Noise	< 5 e ⁻	δ-doped EMCCD also a	4	
Astrophysics	Quantum Eff.	> 70%	candidate, but needs rad hard testing and lower clock- induced charge		
9602-8	Format > 2k × 2k		madeed endige	16	

Mirror Coatings

• Needed for Primary & Secondary mirror surfaces

• Broadband performance from UV to NIR

 Compatible with high-contrast imaging by internal coronagraph

K. Balasubramanian, *et al.*, "Coatings for UVOIR telescope mirrors", paper 9602-19

Mirror Coatings	Parameter	Need	Capability	Current TRL
	90 nm – 120 nm	> 70%	< 50%	2
Reflectivity	120 nm – 300 nm	> 90%	80%	3
	> 300 nm	ParameterNeedCapabilitynm - 120 nm>70%<50%	> 90%	5
	90 nm – 120 nm	< 1%	TBD	2
Uniformity	120 nm – 250 nm	< 1%	> 2%	3
	> 250 nm	< 1%	1-2%	4
Polarization	≥ 90 nm	< 1%	Not yet assessed; requires study	2
Durability 9602-8	-	Stable performance over mission lifetime (10 years minimum)	Stable performance, but with limited starting reflectivity below 200 nm	4

Development		1	1	2020 E Rev	ecadal view	1	TRL 5				
Activities	FY16	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26
Internal Coronagraph	Leverag li Fund E nev t	ge WFIRST nvestmen Developmo w promisi echniques	T/AFTA t ent of ng s	Develop top 3-4 candidates to TRL 4			nselect to andidates orate DM C technolo	p 2 and ogy	Select flight primary and backup Develop to TRL 6		
Starshade	Contir form Close	nue invest ation fligh on model	ments in t nt, edge te validatior	truss, echs. h tests	Demons Engage	strate dep class truss human/ro comm	loyment o & petals obotic ser unity	Environmental testing of structure, blankets, edges, etc.			
Ultra-stable Large Aperture Telescopes	Separate subscale demonstrations of structures & disturbance isolation AMSD-like mirror developmen program				res & Combine structure, thermal, and dynamic systems; demonstrate stability Select 2 candidate mirror techs.				Subscale stability demonstration testbed integrates all components		
Detectors	Radiati NAS collal	on test pr tec SA/industr borate on	omising E hs. ry/acaden parallel te	MCCD nia echs.	Downselect promising technologies to focus resources			g urces	Final environmental and radiation qualification of selected technologies		
Mirror Coatings 9602-8	Ind polariz	ividually d ation, du	develop re rability pe sam	eflectivity, rformance ples	uniformi e on small	ty, I scale	Full sca class m event r	le coating irror; Scal nonolithic	demonst eable to la architect	ration on arger mirr ure is bas	1.5-m ors in elined

Conclusions

- A multi-institutional team, studying a large UV-Optical-IR telescope with two science goals:
 - Detect and characterize habitable exoplanets
 - Broad array of general astrophysical observations
- Identified 5 key technologies to enable ATLAST
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large-aperture telescopes
 - Detectors
 - Mirror Coatings
- Recommended actions for developing technologies to TRL 5 in time for a new mission start in 2024

Questions?

BACKUP

Historical Context

- 2009
 - Multi-institutional team studies ATLAST concept; proposed to 2010
 Decadal Survey
- 2010
 - Decadal Committee recommends "a New Worlds Technology Development Program" as the highest priority medium-scale activity
- 2014
 - NASA Astrophysics 30-year Roadmap recommends a large UV-Optical-Infrared (LUVOIR) telescope in the "Formative Era"
- 2015
 - AURA releases From Cosmic Birth to Living Earths; recommends the High Definition Space Telescope (HDST) as a general astrophysics observatory with the "killer app" of detecting and characterizing habitable exoplanets
- Early to mid-2016
 - NASA Astrophysics Division initiates Science and Technology Definition Teams (STDTs) to perform detailed mission concept studies in preparation of the 2020 Decadal Survey: LUVOIR is one of four missions to be studied

Notional Instrument Requirements

Science Instrument	Parameter	Requirement	Stretch Goal
	Wavelength Range	100 nm – 300 nm	90 nm – 300 nm
UV Multi-Object	Field-of-View	1 – 2 arcmin	-
Spectrograph	Spectral Resolution	R = 20,000 – 300,000 (selectable)	-
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm
Visible-NIR	Field-of-View	4 – 8 arcmin	-
Wide-field Imager	Image Resolution	Nyquist sampled at 500 nm	-
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm
Visible-NIR Integral	Field-of-View	4 – 8 arcmin	-
Field Spectrograph	Spectral Resolution	R = 100 – 10,000 (selectable)	-
	Wavelength Range	Sensitivity to 5 µm	-
Visible-NIR Integral Field Spectrograph MIR Transit Spectrograph	Field-of-View	TBD	-
opeoelograph	Spectral Resolution	R = 200	_
	Wavelength Range	400 nm – 1.8 μm	200 nm – 2.5 μm
	Raw Contrast	1×10 ⁻¹⁰	-
Starlight Suppression	Contrast Stability	1×10 ⁻¹¹ over integration	-
System	ntParameterRequiWavelength Range $100 \text{ nm} - 300$ Field-of-View $1 - 2 \arctan$ Spectral Resolution $R = 20,000 - (selectable)$ Wavelength Range $300 \text{ nm} - 1.8$ Field-of-View $4 - 8 \arctan$ Image ResolutionNyquist samp 500 nm andWavelength Range $300 \text{ nm} - 1.8$ ralField-of-View $4 - 8 \arctan$ Spectral ResolutionNyquist samp 500 nm andField-of-View $4 - 8 \arctan$ bhSpectral Resolution $R = 100 - 10$, (selectable)bhSpectral Resolution $R = 100 - 10$, (selectable)bhSpectral Resolution $R = 200$ Wavelength RangeSensitivity to $Spectral Resolution$ field-of-ViewTBDSpectral Resolution $R = 200$ Wavelength Range $400 \text{ nm} - 1.8$ Raw Contrast 1×10^{-10} Contrast Stability 1×10^{-11} over i Inner-working angleinnetField-of-View $\sim 0.5 \operatorname{arcsec}$ netField-of-View $\sim 0.5 \operatorname{arcsec}$ ResolutionSesolution $R = 70 - 500$	36 milli-arcsec @ 1 μm	-
	Outer-working angle	> 0.5 arcsec @ 1 µm	-
Multi Dand Evenlandt	Field-of-View	~0.5 arcsec	-
Imager	Resolution	Nyquist sampled at 500 nm	-
Evonlanot Sportrograph	Field-of-View	~0.5 arcsec	-
Exoplanet Spectrograph	Resolution	R = 70 - 500 (selectable)	-

Internal				2020 D Rev	ecadal iew	TRL 5					
Coronagraph	FY16	FY17	FY18	FY19	م FY20	FY21	FY22	FY23	FY24	FY25	FY26
Broadband High-Contrast Coronagraph includes Wavefront Sensing & Control (WFSC)	Multi-i study ex coro tecl Lev WFIR inves	institution of new & isting nagraph hniques verage ST/AFTA tment in WFSC	Detop	evelopmer 3-4 candi to TRL 4	nt of dates	Dow ca Dev	nselect to andidates; elop to TR	~2 L 5	Select i ar Dev	mission pr nd backup elop to TR	rimary ; L 6
Deformable Mirrors	Indus co Lev	try Engage unts, yield verage WF	ement; Im I, electron IRST/AFT/	prove act ics precisi A investm	uator on ent	Select Mirror Arch.	Dev	Environm elop flight	nental qua : electroni	lification cs & softw	vare
Autonomous Onboard Computation	Devel	opment o process verage WF	f high-spe ing archit IRST/AFT/	ed, low-p ectures A investm	ower ent	Implement WFSC software on hardware; perform radiation & environmental testing; Support coronagraph testbed ops.					
Starlight Suppression 9602-8 Image Processing	Levera AFTA	investmer	T/ nt		Extend PS	PSF calibration techniques to gain factors of 50-100× in contrast improvement					

Ultra-stable Large		1	L 5								
Aperture Telescopes	FY16	FY17	FY18	۷ FY19	FY20	FY21	FY22	۷ FY23	FY24	FY25	FY26
Mirrors	Advan Demon prog mater	ced Mirro strator (A gram com ials & arch	r System MSD)-like paring nitectures	Do	wnselect candidat	to ~4 es	Downse 2 cand	elect to idates			
Stable Structures	Dem (seg	Demonstration of subscale (segment-level) structure system dynamics Expand to multi-segment larger scale;							Subso Incorpo struct contro actu	cale stabili testbed: orate mirr dure, thern ol, metrolo uators, and	ity rors, nal ogy, d
Thermal Stability	(Investi Sta	(Investigate as part of Mirrors and Stable Structures efforts) Incorporate thermal control and dynamic isolation system;									
Disturbance Isolation System	Invo Stu	est in high demonst dy low-TR risk rec	-TRL testk trations; L options luction	oed for							
Metrology & Actuators 9602-8	Enga	age indust	ry for imp	proved me	trology te	chniques	and actua	ators			28

9602-8

Mirror		1	1	TRL 5			1										
Coatings	FY16	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26						
Reflectivity	Devel mo	op UHV eo ving sour capab	quipment ces and Al ilities.	with .D	Process for techniq	s develop promisin ues such a											
Uniformity	Develop test	Develop automated instruments, test methods, and analyses. Uniformity studies with a large number of samples TRL 5 & 6 demonstration									of						
Polarization	Theoretical Analysis & Estimate of Requirements Focused, practical measurements to guide development TRL 5 & 6 demonstrate coating on 1.5-m substrate						-m mirror ate	mirror									
Durability	Det	tailed test	s & analys	sis	Large-s deve prote	scale tests elopment ected coat	and of ings				30						