

High energy astrophysics summer school Urbino 28 July- 1August 2008

Neutron Star Low Mass X-ray Binaries (NSLNIXBs) seen by NTEGRAL: high energy behaviour

Antonella Tarana

In collaboration with: • l'IBIS TEAM (IASF-Roma, INAF): A. Bazzano, P. Ubertini, F. Capitanio, G. De Cesare, M. Fiocchi, L. Natalucci, M. Del Santo, M. Federici • A.A. Zdziarski, D. Gotz, T. Belloni

Outline

• The INTEGRAL Laboratory

- The Galactic Survey
- Low Mass X-ray Binaries, Bursters and Atoll sources
 - Emission processes
 - INTEGRAL contribution on understanding NSLMXBs (>20 keV)
- LMXBs spectral variability study with INTEGRAL: some example
- Our Project: the source selected and aims.

INTEGRAL

 INTEGRAL (INTErnational Gamma-Ray Laboratory): launched on October 17th 2002, elliptic orbit lasting about 3 days.

IBIS coded mask

Star trackers

- **BIS** (Imager on Board the INTEGRAL satellite)
 - Energy range: 15 keV 10 MeV
 - FOV: 29°x29° (9°x9° fully coded)
 - Angular resolution: 12'
 - Sensitivity (3 sigma,1Ms): 2.3·10⁻⁶ ph cm⁻²s⁻¹keV⁻¹ @ 100 keV

• JEM-X

- Energy range: 3-35 keV JEM-X
- FOV= 13.2°x13.2° (4.8°x4.8° fully coded)
- Angular resolution: 3'
- Sensitivity (3 sigma, 1Ms):
 1.3 ·10⁻⁵ ph cm⁻²s⁻¹keV⁻¹@ 6 keV

INTEGRAL

- Coded mask instruments: the signal must be decodified.
- All the sources of the Field Of View (FOV) must be identified.

INTEGRAL

• From October 2002 to today:

Revolution #705
About 60000 pointings (ScWs) lasting 2000-3600 seconds each.

At IASF-Rome more than 4 tera byte of data

Third IBIS Galactic Survey (first 3.5 years) (Bird et al. 2007): about 460 sources!

•21% transient, 79% persistent: for the persistent sources we can use the mosaic of all observations! For the transient sources we must do a more detailed pointing study.

Sources population

The Low Mass X-ray Binaries

X-ray Binaries: systems composed by a normal star and a compact star (BH, NS and WD). X-ray emission at $L_X \sim 10^{37}$ erg s⁻¹ due to mass tranfer phenomena.

- Accretion by Roche Lobe overflow
- Companion star:
 - Late type (> A), pop II
 mass M<2M_
- L_x/L_{ott}~100-1000
- Orbital Period ~ 10 m-10 d
- Rare eclipses and X pulsation

→ old systems → located in the Galactic Bulge

- Accretion disk → black body (thermal)
- **Corona** \rightarrow Comptonization
- Reflection → reflected emission by the accretion disk
- Jet ? → non-thermal emission (synchrotron emission)

Burster and Atoll sources

Type-1 X-ray bursts sources:

-Recurrent X-ray peak emission
(range E=0.1-40 keV) with E ~10³⁹ erg
- Fast rise (~ 1 s) and exponential decay
- Cooling black body spectra during the decay
Thermonuclear flash on the NS surface

→The compact objects are NEUTRON STARs

Atoll sources:

"Atoll" track in the Color-Color Diagram (CCD)
Different spectral and timing properties in the different branches of the CCD

Sources with spectral state variations

Why the high energy

- Open questions in the physics of NS LMXBs, Atoll:
 - > Thermal high energy emission:
 - > Are the bursters lower luminous than Black Hole **Binaries?** (Bursters Box?)
 - > Have the Bursters different spectral state parameters respect to the Black Hole **Binaries**?
 - Non-thermal emission: what is the origin of the hard power law tails?
 - **Does Radio-X ray connection** exist also for Atol as for BH and Z sources?
- Accretion processes physics
- Differences and similarities with BHCs and AGNs.

2006

Barret et al. 1996, 2000

NSLMXBs observed by INTEGRAL: some example

4U 1820-30

- Ultracompact sistem, P=685 s
- In the Globular Cluster NGC 6624.
- Ligth curves ASM, JEM-X and IBIS: March 2003 October 2005
- Period A: max Flux in the 4-10 keV band, ~ 530 mCrab; period C min Flux in the 4-10 keV band, ~ 100 mCrab

 Hard color- Intensity diagram: JEM-X (4-10 and 10-20 keV)

Maximum bolometric Luminosity 7.7 $_10^{37}$ erg s⁻¹ (assuming d=5.8 kpc) ¹⁵

4U 1608-522

Transient source

- Observation period February 2004 September 2006
- Outburst: February June 2005
- Tarana et al. ApJ accepted 1.5-12 keV ASM 4-10 keV JEM-X 750 550 350 150 10-20 keV JEM-X (mCrab) 150 20-30 keV IBIS 100 50 L. × 150 30-60 keV IBIS 100 50 Х 150 60-120 keV IBIS 100 50 × 53450 53500 53550 53600 t (MJD)
- IBIS and JEM-X: I= (10-20 keV)+(20-30 keV) Hard Color= (20-30 keV/10-20 keV)
- JEM-X: I= (4-10 keV)+(10-20 keV)

Our project

• INTEGRAL data analisys of the transient source 4U 1722-30:

- Temporal analysis: ligth curves
- Photometric analysis: Color-Intensity diagrams
- Spectral analysis: detailed wide band spectra

 Here only few month of observation (180 ScWs, August-October 2005) because of limited resources to be allowed (time and disk space)

4U 1722-30 (alias GRS 1724-30, 1E 1724-3045)

- Located in the Globular Cluster Terzan 2
- Transient source
- Type 1 X-ray bursts source (Grindlay et al. 1980)
- ASCA, EXOSAT, ROSAT 1-20 keV observation: power law with photon index 2-2.4.
- High energy observations:
 - SIGMA/GRANAT (>40 keV): first detection of hard emission
 - BeppoSAX (0.1-100 keV): kT₀~ 1keV, kT_e~30 keV and τ~ 3; plus blackbody with kT_{bb}~ 0.6 keV

Guainazzi et al 1998

Aim of the project

- Spectral parameter changes: what is the temperature of the Comptonised corona?
- How does the Soft component change during the spectral evolution?
- Does the R_{in} of the accretion disk change?
- Is there any non-thermal emission component in the Hard and Soft state?

Conclusions

- We aim to study the high energy behaviour of the NSLMXB 4U 1722-30
- INTEGRAL is the right laboratory to perform the study of the spectra at >20 keV:
 - IBIS is very efficient at ~ 60 keV where we expect differences in kT_e of BHCs vs NSs
 - Better angular and spectral resolution compared to Swift and other working satellites
 - Constant monitoring of the sky.