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Make every photon count.
Account for every photon.
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Analysis in high-energy astrophysics

data  models

kept forever in archives  kept forever in journals and textbooks

{ni}i=1,N  {µi}i=1,N

≥ 0 individual events  continuously
distributed
detector coordinates  physical parameters

never change  change limited only by
physics

have no errors  subject to fluctuations

most precious resource  predictions possible

statistics
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“There are three sorts of lies: lies, damned lies and statistics.”
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 Statistical nature of scientific truth

• Measurements in high-energy astrophysics collect individual events
• Many different things could have happened to give those events
• Alternatives are governed by the laws of probability
• Direct inversion impossible
• Information derived about the universe is not certain
• Statistics quantifies the uncertainties :

• What do we know ?
• How well do we know it ?
• Can we avoid mistakes ?
• What should we do next ?
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There are two sorts of statistical inference

• Classical statistical inference
• infinite series of identical measurements (Frequentist)
• hypothesis testing and rejection
• the usual interpretation

• Bayesian statistical inference
• prior and posterior probabilities
• currently popular

• Neither especially relevant for astrophysics
• one universe
• irrelevance of prior probabilities and cost analysis
• choice among many models driven by physics
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There are two sorts of statistic

• χ2-statistic

•  C-statistic

 Gaussian statistics

 Poisson statistics
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There are two sorts of statistics

• Gaussian statistics  χ2

•   Poisson statistics  C
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Gaussian statistics
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P(x |µ,σ )dx ≈ 0.6827
−1σ
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1σ 68.3%
2σ 95.45%
3σ 99.730%
4σ 99.99367%
5σ 99.999943%

1σ 1/3
2σ 1/22
3σ 1/370
4σ 1/15787
5σ 1/1744277
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Poisson statistics
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The Poisson probability distribution for data={n≥0} and model={µ>0}
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Likelihood of data on models

      {ni}i=1,N data       statistics        models {µi}i=1,N
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Cash 1979, ApJ, 228, 939
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Numerical model of the life of a photon

Detected data are governed by the laws of physics. The numerical model should
reproduce as completely as possible every process that gives rise to events in the
detector:

• photon production in the source (or sources) of interest
• intervening absorption
• effects of the instrument

• calibration
• background components

• cosmic X-ray background
• local energetic particles
• instrumental noise

• model it, don’t subtract it
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An XMM-Newton RGS instrument
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RGS SAS & CCFCCF components

BORESIGHT
LINCOORDS
MISCDATA

HKPARMINT

ADUCONV
BADPIX
CROSSPSF
CTI

LINESPREADFUNC
QUANTUMEFF
REDIST
EFFAREACORR

rgsproc

•atthkgen
•rgsoffsetcalc
•rgssources
•rgsframes
•rgsbadpix
•rgsevents
•evlistcomb
•gtimerge
•rgsangles
•rgsfilter
•rgsregions
•rgsspectrum
•rgsrmfgen
•rgsfluxer

mλ=d(cosβ−cosα)

5-10% accuracy is a common calibration goal
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The final data model

µ(θ,β,Δ,D)=S(θ(Ω))⊗R(Ω<Δ>D)+B(β(D))

D = set of detector coordinates {X,Y,t,PI,…}
S = source of interest
θ = set of source parameters

R = instrumental response
Ω = set of physical coordinates {α,δ,τ,υ,…}
Δ = set of instrumental calibration parameters
B = background
β = set of background parameters

  lnL(θ,β,Δ)     lnL(θ)
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Uses of the log-likelihood, lnL(θ)

• lnL is what you need to assess all and any data models
• locate the maximum-likelihood model when θ=θ*

• minimum χ2 is a maximum-likelihood Gaussian statistic
• minimum C is a maximum-likelihood Poisson statistic

• compute a goodness-of-fit statistic
• reduced chi-squared χ2/ν ~ 1 ideally
• reduced C                  C/ν ~ 1 ideally
• ν = number of degrees of freedom

• estimate model parameters and uncertainties
• lnL(θ)

• θ* = {p1,p2,p3,p4,…,pM}
• investigate the whole multi-dimensional surface lnL(θ)
• compare two or more models

• calibrating lnL, 2ΔlnL  σ√2ΔlnL
• 2ΔlnL < 1. is not interesting
• 2ΔlnL > 10. is worth thinking about (e.g. 2XMM DET_ML ≥ 8.)

• 2ΔlnL > 100. Hmmm…
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Example of a maximum-likelihood solution

N-pixel image : data {ni} photons : model {µi=spi+b} : PSF pi  : unknown parameters {s,b}
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Goodness-of-fit

• Gaussian model and data are consistent if χ2/ν ~ 1
• ν = “number of degrees of freedom”

 = number of bins − number of free model parameters
 = N - M

• cf <(x−µ)2/σ2>=1
• same as comparison with best-possible ν=0 model, µ=x,

• χ2 = 2(lnL(µ=x)−lnL(θ))

• Poisson model and data are consistent if C/ν ~ 1
• comparison with best-possible ν=0 model, µ=n

• 2∑(nilnni−ni) − 2∑(nilnµi−µi) = 2∑niln(ni/µi)−(ni−µi)
• XSPEC definition
• What happens when many µi«1&& ni=0 ?

Estimate model parameters and their uncertainties

• Parameter error estimates, dθ, around maximum-likelihood solution, θ*
• 2lnL(θ*+dθ) = 2lnL(θ*) + 1. for 1σ  (other choices than 1. sometimes made)
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Comparison of models

• Questions of the type
• Is it statistically justified to add another line to my model ?
• Which model is better for my data ?

• a disk black body with 7 free parameters
• a non-thermal synchrotron with 2 free parameters

• More parameters generally make it easier to improve the goodness-of-fit
• Comparing two models must take ν into account

• {µi
1} and {µi

2}
• the model with the higher log-likelihood is better

• compute 2ΔlnL
• Δχ2 > 1,10,100,1000,… (F-test) per extra ν
• ΔC  > 1,10,100,1000,… (Wilks’s theorem) per extra ν
• use of probability tables could be required by a referee
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Practical considerations

• S/ν is rarely ~ 1
• S=χ2|C
• lnL(θ,β,Δ)
• θ = set of source spectrum parameters

• physics might need improvement
• β = set of background parameters

• background models can be difficult
• Δ = set of instrumental calibration parameters

• 5 or 10% accuracy is a common calibration goal
• solution often dominated by systematic errors

• XSPEC’s SYS_ERR is the wrong way to do it
• no-one knows the right way (although let’s look at those Gaia people…)

• formal probabilities are not to be taken too seriously
• S/ν > 2 is bad
• S/ν ~ 1 is good
• S/ν ~ 0 is also bad

• find out where the model isn’t working
• pay attention to every bin
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The ESA Gaia AGIS idea

• Observe 1,000,000,000 stars in the Galaxy
• Find the Astrometric Global Iterative Solution
• Primary AGIS: For about 10% of all sources (“Primaries”) treat all

parameters entering the observational model (S,A,C,G) as unknown.
Solve globally as a least-squares minimisation task
• _observations |observed-calculated(S,A,C,G)|2=min

• This yields
• Reference attitude, A
• Reference calibration, C
• Global reference frame, G
• Source parameters for 100 million objects, S

• Secondary AGIS: Solve for the unknown source parameters of the
remaining 900 million sources with least-squares but use A+C+G from
previous Primary AGIS solution
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Exploration of the likelihood surface lnL(θ)

• Frequentists and Bayesians agree that the shape of the entire surface is important
• find the global maximum likelihood for θ = θ*

• identify and understand any local likelihood maxima
• calculate 1σ intervals to summarise the shape of the surface (time-consuming)
• investigate interdependence of source parameters
• make lots of plots

• why log-log plots ?
• Verbunt’s astro-ph/0807.1393 proposed abolition of the magnitude scale

• pay attention to the whole model
• XSPEC has some relevant methods

•  XSPEC> fit ! to find the maximum-likelihood solution
• XSPEC> plot data ratio ! Is the model good everywhere ?
• XSPEC> steppar [one or two parameters] ! go for lunch
• XSPEC> error 1. [one or more parameters] ! go home
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Gaussian or Poisson ?

• The choice you have to make
• XSPEC> statistic chisq
• XSPEC> statistic cstat

• For high counts they are nearly the same (σ2=n)
• (x−µ)2/σ2   (n−µ)2/n   (n−µ)2/µ

• Gaussian chisq
• the wrong answer
• the choice of most people
• asymptotic properties of χ2 goodness-of-fit is probably the reason
• rebinning routinely required to avoid low-count bias

• n≥5 or 10 or 25 or 100 according to taste
• Poisson cstat

• the correct answer for all n≥0
• my preference
• no rebinning necessary
• C-statistic also has goodness-of-fit properties
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To rebin or not to rebin a spectrum ?

• Pros
• Gaussian  Poisson for n » 0
• dangers of oversampling
• saves time
• everybody does it
• “improves the statistics”
• grppha and other tools exist
• on log-log plots ln0=−∞

• Cons
• rebinning throws away information
• 0 is a perfectly good measurement
• images are never rebinned
• Poisson statistics robust for n ≥ 0
• µ1+µ2 is also a Poisson variable
• oversampling harmless
• adding bins does not “improve the statistics”

Leave spectra alone! Don’t rebin for lnL(θ). Use Poisson statistics.
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Part of the high-resolution X-ray spectrum of ζ Ori
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Error propagation with XSPEC local models

• He-like triplet line fluxes
• r=resonance, i=intercombination, f=forbidden
• Ratios of physical diagnostic significance

• R=f/i
• G=(i+f)/r

• r=norm
• i/r=G/(1+R)
• f/r= GR/(1+R)

• XSPEC> error 1. $G $R

 SUBROUTINE trifir(ear, ne, param, ifl, photar, photer)

      INTEGER ne, ifl
      REAL ear(0:ne), param(8), photar(ne), photer(ne)

C---
C XSPEC model subroutine
C He-like triplet skewed triangular line profiles
C---
C see ADDMOD for parameter descriptions
C number of model parameters:8
C       1       WR     resonsance line laboratory wavelength (Angstroms) : fixed
C       2       WI      intercombination line laboratory wavelength (Angstroms) : fixed
C       3       WF      forbidden line laboratory wavelength (Angstroms) : fixed
C       4       BV      triplet velocity zero-intensity on the blue side (km/s)
C       5       DV      triplet velocity shift from laboratory value (km/s)
C       6       RV      triplet velocity zero-intensity on the red side  (km/s)
C       7       R        f/i intensity ratio
C       8       G        (i+f)/r intensity ratio
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Some general XSPEC advice

• Save early and save often
•  XSPEC> save all $filename1
• XSPEC> save model $filename2

• Beware of local minima
• XSPEC> query yes
• XSPEC> error 1. $parameterIndex ! go home

• Investigate lnL(θ) with liberal use of the commands
•  XSPEC> steppar [one or two parameters] ! go for lunch
• XSPEC> plot contour

• Use separate TOTAL and BACKGROUND spectra
• Change XSPEC defaults if necessary

• Xspec.init
• Ctrl^C
• Tcl scripting language
• Your own local models are often useful
• Make lots of plots

• XSPEC> setplot rebin …
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Example XSPEC steppar results
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Example XSPEC steppar results

Warning : this took several days - and it’s probably wrong.
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XSPEC’s statistical commands

• XSPEC12> goodness ! simulation
• XSPEC12> bayes    ! Bayesian inference
• XSPEC12> chain    ! Bayesian MCMC methods
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General advice

• Cherish your data.
• Be aware of the strengths and limitations of each instrument.
• Don’t subtract from the data, add to the model.
• Make lots of plots.
• Pay attention to every part of the model.
• Think about parameter independence.
• 1σ errors always.

• Same for upper limits.
• Make every decision a statistical decision.
• Make the best model possible.

• If there are 100 sources and 6 different sorts of background in your data,
•             put 100 sources and 6 different sorts of background in your model.

Make every photon count.
Account for every photon.
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