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Advantages of focusing optics versus direct-view

detectors
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B =background flux, Tint = integration time, AE = integration bandwidth

Moreover: much better imaging capabilities!




Simulation of two sources in a "Einstein”
field as seen by a direct view detector

With the direct vie detector the second "weak" sources is lost in the background



X-ray astronomical optics history in pills (I)

- 1895: Roentgen discovers "X-rays”

° 1948: First succesfull focalization of an X-ray beam by a total-reflection
optics (Baez)

- 1952: H. Wolter proposes the use of two-reflection optics based on conics
for X-ray microscopy

* 1960: R. Giacconi and B. Rossi propose the use of grazing incidence optics
for X-ray telescopes

* 1962: discovery by Giacconi et al. of Sco-X1, the first extra-solar X-ray
source

- 1963: Giacconi and Rossi fly the first (small) Wolter I optics to take images
of Sun in X-rays

* 1965: second flight of a Wolter I focusing optics (Giacconi + Lindslay)

*1973: SKYLAB carry onboard two small X-ray optics for the study of the Sun



X-ray astronomical optics history in pills (II)
- 1978: Einstein, the first satellite with optics entirely dedicated to X-rays

© 1983: EXOSAT operated (first European mission with X-ray optics aboard)

*1990: ROSAT, first All Sky Survey in X-rays by means of a focusing
telescope with high imaging capabilities

*1993: ASCA, a multimudular focusing telescope with enhanced effective area
for spectroscopic purposes

* 1996: BeppoSAX, a broad-band satellite with Ni electroformed optics

* 1999: launch of Chandra, the X-ray telescope with best angular resolution,
and XMM-Newton, the X-ray telescope with most Effective Area

* 2004: launch of the Swift satellite devoted to the GRBs investigation (with
aboard XRT)

- 2005: launch of Suzaku with high throughput optics for enhanced
spectroscopy studies with bolometers



Imaging experiments using Bragg reflection from
“replicated” mica pseudo-cylindrical optics
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E. Fermi - Thesis of Laurea, "Formazione di immagini con
i raggi Roentgen” ("Imaging formation with Roentgen

I“OYS"), Univ. of Pisa (1922) Thanks to Giorgio Palumbol!



X-ray optical constants

complex index of refraction to descrive the interaction X-rays /matter:

A=n+ip=1-8+ip /Linear abs. coeff.
=>»changes of phase (Wedn B cmT) &

=> absorption

at a boundary between two materials of different refraction index n;,
- reverse of the momentum P in the z direction:
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the amplitute of reflection is described by the Fresnel's equations:
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Total X-ray reflection at grazing incidence

° if vacuum is material #1 (n,. 1) & the phase velocity in the second medium
increases = beam tends to be deflected in the direction opposite to the normal.

- Snell's law (n1 cos6, =n2 cosB,) to find a critical angle for total reflection:
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* far from the fluorecence edges f,
~ Z and for heavy elements Z/A =

0.5: g, (aremin)~5.6A(4)y/p

* reflectivity loss due to scattering:
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Other examples: C, Ni, Au

10° l | | | | | ~
—— Dati sperimentali
-1 —— Modello
10 i |
017
o a,
= 107 = I —
() A
= | i - -
X , 3 _| { it Ao, z(Nickel)=60 nm i
10 iR T 7
| 1 1 A 1 . ,
10 | Y LU TEHA
‘ - | 'y i =LF A5
| 1! \ IT T LR
RaARAY.
10° i |

I
1000

I
2000

I
3000

I
4000

I
5000

Angolo di incidenza [arcsec]

I
6000




X-ray mirrors with
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* perfect on-axis focusing

* of f-axis images strongly affected by coma
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A ‘Telescope’ for Soft X-Ray Astronomy
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With the development of artificial satellites
it has become possible to observe soft X rays
from extraterrestrial sources. The purpose of
this note is to describe the design of an X-ray
‘telescope’ and to analyze some of its charac-
teristics.

The instrument consists of one or several
parabolic mirrors on which the X rays impinging
at nearly grazing angles undergo total reflection.
The possibility of using opties of this type has
been discussed in the past in connection with
Xeray microscopy [Kirkpatrick and Pattee, 1957;
Trurnit, 1946]. These discussions have remained
of purely theoretical interest, owing to the diffi-
eulty of constructing sufficiently accurate mirrors
of the extremely small physical dimensions re-
quired. These difficulties, however, are greatly
reduced in the construction of large mirrors.
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Let us consider first a narrow section of a
parabolic mirror whose plane is at the distance I
from the focus of the paraboloid, F (Fig. 1).
Rays parallel to the axis are concentrated by
the mirror into a point at F. It can be shown
that, on a first approximation, a parallel beam
of rays, forming a small angle, @, with the axis,
are concentrated on a circle in the focal plane
whose center is at F* and whose radius is B = la.
Thus, a detector of radius R in the focal plane
will record all rays striking the mirror and form-
ing with the axis angles less than R/L.

In the actual design of the instrument it is
necessary to consider two limitations: (1) for
each wavelength, and for each material, the
angle of the incident rays with the reflecting
surface must be smaller than a certain value,
6, so that the reflection coefficient will be of the
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paraboloid. The incident rays are in the zy plane,



The Abbe sine condition to have coma-free focusing mirrors

Coma: of f-axis abberation caused by a different
magnification of reflected rays, depending on the
hitting position at the mirror surface
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Typical blurring
of a focal spot
due to coma

» Coma free mirrors must satisfy the Abbe sine condition:

The surface defined by the intersection of each input ray with its
corresponding output ray (principal or Abbe surface) must be a sphere

around the image, i.e.:

Frincipal Surface
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Incident Rays



Parabolic mirrors & the Abbe sine condition

The parabolic profile approximately obeys to the Abbe rule only near the
vertex, i.e. at hormal incidence but not for grazing incidence angles
=> the parabolic geometry is not optimal for X-ray telescopes

Parabolic mirror

grazing incidence zone
violation of the

. Abbg sine rule
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Wolter's solution to the X-ray imaging
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The Wolter I mirror profile for X-ray astronomy

applications
* it guarantees the minimum focal length for
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0= on-axis incidence angle
R = aperture radius
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a given aperture

- it allows us to nest together many confocal

mirror shells
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The Abbe condition and the Wolter I mirror profile

.
parabola
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" hyperbole

Abbe surface  first mirror
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Separation surface for a Wolter I mirror

Spherical aberration term
— tan? Residual coma
an L
o,,, =0.2 4 +4tany tan® @— [
tan0 \ F’
= rms blur circle 0 = incidence angle v = off-axis angle

OI’I’l’lS
L = mirror height F= focal length

» L1 |
> 5 r = focal plane radius
F*tan“ 0

NOTE.
the optimal focal plane is not flat: O flar * 1



Alternative profiles derived from Wolter I

> Wolter-Schwarzschild profile: it exactly satisfies the Abbe
sine condition and it has been adopted for the Einstein mirrors, is
coma free but it strongly affected by spherical aberration

> double-cone profile: it better approximates the Wolter I at
small reflection angles: It is utilized for practical reasons (- cost
+ effective area). Intrinsic on-axis focal-blurring given by:

1 o L
F

> polynomial profile: parameters have been specifically optimized to

maintain the same HEW in a wide field of view
(introducing small aberration on-axis the of f-axis imaging behavior is improved = same
principle of the Ritchey-Chretienne normal-incidence telescope in the optical band)



A== Kirpatrick-Baez Telescopes
’H,"::;fj[-::}_:_’_:::-}_'_'_'_: " » parabolic-profile curved mirrors in just one
/,H;,Hf,ff direction = to focus a beam in a single point another
’ fé ;f"ll'f*” | ~identical mirror has to be orthogonally placed with
yd S respect to the first one;
::f":’.' |

/ > it is possible to nest many confocal mirrors to
?I increase the effective area,

» compared to a Wolter I system with same
N focal length and same incidence angle (on-axis),
j 1. ™. angles are two time larger:

’ 2
L;;ff’i’p] > imaging capabilities result to be limited by
-==">  some inherent aberration,

.y

NB: by means of a K-B optics was performed the first successful attempt
of the focalization of an X-ray beam in total-reflection regime (1948)



| # Lpbster-Eye
Lobster-Eye optics s Optics Geometry

(1-dimensional)
»system similar to spherical normal-incidence mirrors
but, in this case, the beam impinges on the convex part
of the entrance pupil;

x-ray reflector \
array

> the pupil is formed by a system o channels with
square section uniformly distributed around a spherical
surface of radius R. To be focused in a single point a
collimated beam has to sustain the reflection by two
orthogonal walls of a same channel;

f=R/2
» the photons are focused onto points distributed on a rentorof symmety
spherical surface of radius R/2; + I
> a preferential optical axis does not exist = the Parallel output/
source/focus input beam

system field of view can be in principle as large as 4

with the same Effective Area for every dir‘echﬂ\L7
Rsiump I infinite

- _—

15=1/2 Rslump



_ Manufacturing technigues utilized so far
G 1 Classical precision optical polishing and grinding

) Projects:  Einstein, Rosat, Chandra
- Advantages: superb angular resolution
Drawbacks:  high mirror walls = = small number of nested

R ASA Mmirror shells, high mass, high cost process

2. Replication
Projects: EXOSAT, SAX, JET-X/Swift, XMM, ABRIXAS (=

examples follow hereafter)

Advantages: good angular resolution, high mirror “nesting”
the same mandrels for many modules

Drawbacks: relatively high cost process, high mass/geom. area

ratio (if Ni is used).

3. "Thin foil mirrors"
Projects: BBXRT, ASCA, SODART, ASTRO-E

Advantages: high mirror “nesting” possibility, low mass/geom. area

ratio (the foils are made of Al), cheap process
Drawbacks: until now low imaging resolutions (I1-3 arcmin)

-~y
#3931 e
eeeeeee

5
----------

Credits: ISAS



Present Astronomical optics technologies:
HEW Vs Mass/geometrical area
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= |Thin foil mirrors
i %ASCA 240" 5
SODART 180" (@ jow enc

100 -8 ASTRO - E 100"

Epoxy repl. [ T g
SiC (OAB) 15"_\¢
‘o

EXOSAT 19" -

@ xk#

it

i “con-X ' 7 _EINSTEIN 4" . . .

L - [Repli ® Directly polished mirrors|’
epli ~ . ROSAT 3"

State of -

the

/ L XEUS 2 At
CHANDRA 0.5"

. |[DIFFICULT TO MAKE
New Configuration || not impossible...)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Mass/Geometrical Area (Kg:‘cmz)




Chandra

* Focal length = 10 m
- 1 module, 4 shells
* Coating = Iridium

* Angular Resolution = 0.5 arcsec HPD




Chandra: a fantastic angular resolution

ROSAT HRI
Crab Nebula

IR A P e

Rosat: HPD = 3 arcsec Chandra: HPD = 0.5 arcsec






Beppo-SAX soft X-ray (0.1 - 10 keV) concentrators

 Wolter I double-cone approx. - Au coating
* 4 modules - 30 shells/mod.

* F.L. =180 cm Max diam = 16.1 cm

* A @1 keV =85 cm? /module

* HEW= 60 arcsec (corresponding to the two-
cones geom. aberration!)

GRB970228



JET-X (optics ready since1996) / SwiftXRT(2004) optics

*Wolter I profile - Au coating (pathfinder
of XMM)

- 2mod. (JET-X) / 1 mod (Swift) - 12
shells/mod.

- F.L. = 350 cm - Max diam = 30 cm

* A @1 keV= 150 cm? /module

Source separation: 20



XMM-Newton (operational since dec. 1999)

- Wolter I profile - Au coating " Are @ 1 keV= 1500 cm? /module

- 3 mod. - 58 shells/mod. * HEW= 15 arcsec

X-ray colours
0.3- 5.0 kev

Credits: ESA



Replication methods

Superpo lished
Mandre (

* Ni electroforming replication
(SAX, JET-X/Swift, XMM,
ABRIXAS, e-ROSITA,
SIMBOL-X, SVOM/XTIAOQ)

* epoxy replication: EXOSAT
(Be), WFXT (Alumina & SiC
prototypes), EDGE/XENIA?
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Mirror design
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HEW = 10 arcsec

WFXT (feasibility study 1997-1998) - Polynomial mirrors
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Test (@ Panter-MPE



The focusing problem in the hard X-ray
renjon (> 10 keV)

Ap=~Fx 67 xR

At photon energies > 10 keV the cut-off angles for
total reflection are very small also for heavy metals

|||||||
__________

=D the geometrical areas with usual focal lengths
(> 10 m) are in general negligible
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Focal Length Vs. Diameters for SIMBOL -
X and other X-ray felescopey\

5 |Focal Length Vs. Diameter for SIMBOL-X and ‘
oL other X-ray telescopes o

Focal Length (cm)

100 I|| L
2 3 4 5

Diameters (cm)

A~ Fx 67 x R*



The formation flight contribution




Reflctivity

Wide ban

X-ray supermirrors

E =60 keV

—— supermirror
—— 35 Angstr. ML

08+ — AuSF.

0.6 1

0.4 4

0.2 4

0.0 4
0.00 0.05 0.10 0.15 0.20
Angle of Incidence (deg)

50nm

d multilayers
Optical supermirrors in a beetle skin

100




Top-level scientific requirements

Energy band: ~0.5 —> 80 keV
Field of view (at 30 keV): > 12’ (diameter)

> 100 cm? at 0.5 keV

> 1000 cm? at 2 keV

> 600 cm? at 8 keV

>300 cm? at 30 keV

>100 cm? at 70 keV
>50cm?  at 80 keV (goal)

<2x10*cts s''ecm2keV-! HED
<3x10* cts s'em=2keV! LED

B> On-axis sensitivity <10c.g.5.(~0.5 pCrab), 10-40 keV band, 30, 1Ms, >

On-axis effective area:

Detectors background

Line sensitivity at 68 keV <3 x107 ph cm? s!' (30, 1 Ms)
S gt resolu <20°(HPD), E < 30 keV —
S < 40”(HPD) @ E = 60 keV (goal)
E/AE = 40-50 at 6-10 keV

Spectral resolution E/AE =50 at 68 keV (goal)

Absolute timing accuracy 100 ps (50 ps goal)
Absolute pointing reconstruction ~ 3" (radius, 90%) (2” goal)

3 years including commissioning and calibrations (2 years of

Mission duration N . . . .
scientific program) + provision for a possible 2 year extension

> 1000 (first 3 years, nominal mission)

Total number of pointings 500 (during the possible 2 year mission extension)



Simbol-X Optical Design

Min-Max Diameter 250 - 650 mm
Focal Length 20000 mm
Mirror Height 600 mm
Configuration Wolter |
Number of Mirror shells 100
Min-Max incidence 0.1° - 0.25°
angles
Min-Max wall

] 0.25 -0.55 mm
thickness__
Total Mirror Mass 287 kg

__NB: thickness trend 2 times less XMM-
Newton



Simbol-X Optical Design

Min-Max Diameter

250 - 650 mm

Newton

nssS t




Angular resolution for past & future
Hard X-ray Experiments

Experiment Year “Imaging” Angular
technigque | resolution
SAX-PDS 1996 Rocking > 3600 arcsec
collimator (collimator
pitch)
INTEGRAL- 2002 Coded mask 720 arcsec
IBIS (mask pitch)
HEFT (baloon) 2005 Multilayer > 90 arcsec
optics HEW
NUSTAR 2011 Multilayer 40-60 arcsec
Optics HEW
SIMBOL-X 2014 Multilayer 15-20 arcsec
Optics HEW
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Effective area (cm?)

Simbol-X Optics

- Heritage from XMM-Newton : nickel shells obtained by
electroforming replication method; low mass obtained via a
reduced thickness of shells

* Coating : multi-layer Pt/C needed for requirement on large
FOV and on sensitivity up to > 80 keV

Mirror areqg

2000 ——————————————————— | Focal length : 20 m

S— Shell diameters : 30 to 70 cm
Shell thickness : 0.2 to 0.6

mm

Number of shells : 100

1000

Simbol—X
XMM / 1 mod
NeXT—HXT

500

200
.}:Fl\.; I‘._'.'l

N.B. I: The optics module
will have both sides covered
AP IR S with thermal blankets

’ Ener;f (keu;.m P ™ NB.II: a proton diverter
will be implemented

100

30

—
[ ] -



Integration of thin mirror shells




Integration of thin mirror shells




Multilayer deposition concept

N
Two side linear
sputlering source
[+] o
o
ey
l IJ l | | 31
: AN 2 9
Mirror
/\{JHV Shell ®
= 5
Multilayer deposition inside Mirror Shell




Calibration of the 2 mirror
shell prototype at Panter MPE pseC 2 shells

1.49 keV

PN - shell 291, 50 kV
Tropic camera, 50 kV, shell 291



Calibration of 2 mirror shell
prototype at Panter MPE

1L 23 22.5
8 24 27.5
20 27 29
35 31 49
50 33 49







Geometric Area and Imaging Resolution (HEW)
for past and future X-ray telescopes

First Activity Year



Sensitivity (cgs) (3 x107"%) @ 0.2-8 keV; 4_

Effective Area Angular Resolution
15 m @02ky &) areser® < 1B ke
-5m2 @ 1 keV a
-2 m2 @ 7 keV Field-of - View

-1 m2@ 10 keV 7 (10) arcmin diameter: WFI, HXI
- (0.1) m2 @ 30 key 1.7 arcmin diameter: NFI



XEUS X-ray optics requirements

ITEM

Requirement Goal
5 arcsec 2 arcsec

5 m? 5 m?

2 m? 2m?

N.B. data from the proposal document




Optics mass budget

Mirrors | Support | ancillary Total
882 kg 176 kg 238 kg 1296 kg
N.B. data from the proposal document
Optics error budget
Specification | Inherent | Intrinsic | Extrinsic | Enviro | Total
(arcsec) nment
1.4 1.2 0.5 0.5 2
1.8 3.7 2 2 5

N.B. data from the proposal document




Optics Characteristics

Characteristic Value

0.6 x 1.5 mm?

0.67-2.1 m

0.27-0.86 degrees

35 m

170_m/arcsec

N.B. data from the proposal document



XXMM

4.5 m



Total reflecting surface to be produced

25X

Need of a manufacturing process scalable at a high
volume production industrial level!




Effective Area (sz)
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X-ray Pore Optics System

Double-Cone approximation

M

%\\\}\\\\3\\\\\\\\\\\\ \\\\\\\l\l\l§munm [l

Focus

Focal Plane
CS Pixelated Detector

N.B. :concept introduced by D. Willingale et al, Capri 1994



Pore Optics technology

Credits: ESA & Cosine



Cellular solids: light weight structures with a very high stiffness
SEARCH INSIDE!™
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Preliminary imaging tests onto
two-reflection optics (I)

Slit, plate 1.0
log intensity scale

A (BESSY)

TR IT RN RN NR N AR RR RN
Credits: ESA, Cosine, MPE

" PSPC @ Panter

Collon et al, SPIE Proc 67898, in press (2007)



Alternative approach: hot sluping of thin
glass segments

Secondary

(a) Observatory (b) Mirror Assembly (c) Mirror Module  (d) Mirror Segment

3
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5

€
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|

L

g .

o 4855130~ Sup—-CT4~PB-MO1 - 300av—07D82
4853130-3up-CT4-PC-MO1 - 3000v-07D82
4855130-Sup-CT4-PC-M02-300av-0/D82

0 | | :
| 0 10 20 30
. . - | B Azimuth Angle (degrees)
Mattress el — 1 0.4 mm thick segments 1 tandem (without

Cantor Tree Suspend &  integration)
Bond HEW = 13 arcsec



Wolter I preliminary design for XEUS (I)

- 3 petal rings, respectively composed by 12 -24 - 36
petals, arranged on the supporting structure:;

* Wolter 1 with focal length 35m; Parabola and
hyperbola are 0.6m long (0.3+0.3); 2 mm x 0.15 mm

ribs every ~75 mm;

*The total number of mirror shells is 403 made of
slumped glass with constant thickness (0.15 mm);

Petal
Ring #

Rmin
[mm]

Rmax
[mm]

Mirror
Shells

number

610

988

192

1130

1508

123

1660

2027

88

Weight including CFRP Structure ~ 2 tons




On-Axis Effective Area (m2)

Wolter I design effective area

Total Collecting Area = 8.51 m’

Coating: Ir+ C

pon b b b b b b b b b b bevna by b g
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Photon Energy (keV)
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Cold slumping glass approach

4 Cold Forming
gh

VacusumSuction
. cold ]

Concave Radial Air Bearing — W' Configuration

] - Temporary
P = .

structural
frame

Convex Radial Air Bearing — “W" Configuration




K-DB “tie” type configurati
H
||

|
||
||
|
|

®Geometry related to fairing dimension

®L=300 mm + 300 mm < >

@8 equal petals 4520 mm
@7 sets of equal blocks for each direction (x, y)_

O®F=35 m: N1=247 N2=243 _=0.0228 rad

®F=25 m: N1=180 N2=176 _=0.0365 rad

®F=20 m: N1=146 N2=141 _=0.0455 rad
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K-B “chocolate” type configuration

® Possibility to use vacant
space
® 4 equal modules

® 6 sets of equal blocks for
each direction

& ® F=35m
R 5555 _ N1=260  N2=258
I - _=0,023 rad
annnnmmmEn S 0 o™
DR EEREEEEE - N1=190 N2=185
> - =0,032 rad
3200 mm ® F=20 m

- N1=151 N2=153
- _=0,04 rad
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LAMAR telescope (1988)

®D. Fabricant, L.M. Cohen, P.
Gorensrein

®Mechanical cold shaping
technology

®Mirror mudule 20 X 30 cm
oF = 3,4 m

L. L ®Effective Area at 1,49 keV

T T 82,2 cm”2

. SN ®Effective Area at 8,01 keV
JWMJd”J“m P .fwm: s e v 9, 2 cm”2

165 AFFLEDCPTCE ¢ Wl IF. Mo 0 5 “SApr] Td! . HEW 30 arcsec at 1 P 5 kev 64



Effective area

® Effective area: K-B vs Wolter | for diffent focal lenght
® Pt+C coating

9

T T T T
K-B Tietype F=35m ———
Wolter | F=35 m
8 i K-B Tietype F=25m ———
Wolter | F=25 m
‘ K-B Tietype F=20m ———
\ Wolter | F=20 m

70 0

E.A [m?]
[8)]

-

1

=
|

e

8 10 12 14 16 18
Energy [keV]

e
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Hard X-ray Focusing by mosaic crystals

* Bragg diffraction from a crystal lattice = reflectivity peaks at:
2dsin6 =nk\
d typical value of a few Angstroms
* mosaic crystals: at microscopic level a structure of microcrystals almost-
parallel to the external crystal surface. The distribution of the crystallites
hormals is described by a Gaussian law

- each crystallite reflects in an independent way (without any interferometric
coupling with the beams reflected from the other crystallites) = the integrated

reflectivity results to be much larger (>100) than for a perfect crystal case
1.0 i i i j = 2d sinf = nA

Pyrolytic Graphite 002

E =8.05keV - - - mosaic crystal
0.8 —— perfect crystal

0.6

Reflectivity

0.4

0.2

.

0.0 E
13.0 13.1 13.2 13.3 134 135 13.6

Gilancing Angle (deg)

microcrystallite



"Bragg” & "Laue” Configurations

Bragg Crystal

/ 1cm

14.3 cm Footprint

icm
Incident
Beam

il

1cm Incident 1 €M Footprint Diffrac
Diffracted  Beam
Beam

Laue Crystal

Bragg

1cm

Beam

- F\? 1
Reflnteg () )’3_XFWHMGCZMSS

2

V u

Laue

F

Re fmteg (V

2

T
X FWHMGauSS X e_MsinB

sin@

F = Structure Factor
V = Volume of the lattice element
w = lin. absorb. coeff




Why crystal diffraction for high energy telescopes

* Focusing optics in the hard X-/soft gamma-ray
band is crucial for a significant leap

* The hard X-ray band (E<80 keV) can be
covered with multilayer mirrors (NuStar, NeXAx
Simbol-X) .

‘The higher energy band (>80 keV) can be
efficiently covered with Laue lenses.

¥ GRI concept

Shieid




Example of configuration suitable for
GRI low energy lens (200-550 keV)

Parameter o ‘ ' ' ‘ Gl (1[1); —
| =
Focal length {m) 100 ao0
Nominal passband (keV) 200-530 b
Inner radius (cm) 88 s 0
Outer radiug (cm) 185 S|
Crystal material Ge[111], Cu[111], Cu[200]
Mosaie spread (arcmin) 0.5 | 1
Tile eross section (mm?) 15 15 o , : ARG A
Tile thickness (mm) optimzed e A& 3 : 00 v B W
Number of erystal rings 61 e
No. of tiles 17661 (Ge[111]}, 3254 {Cu[200]), 3386 (Cu[111])
Crvstal weight (kg 155 e
Effective area (em?) @ 200 keV 500 ~ 5':&2:
Effective area (em?) @ 400 keV 530 Z 4;::05 |
Effective area (em?) @ 511 keV 430 “'; ;&05 I
Half power radms(mm| 12 % 3508 |
;;s 3e-08 |
% 2.5e-08
3 2-08 |
1.5¢-08
le-08

s s . . . s .
150 200 250 300 350 400 450 500 550
Energy - keV

3 sigma sensitivity, T=106s



* Crystal material: Cu(111)

* Available mosaic spread: 3-4 arcmin(now also
available with lower spread):

* Crystal tiles supplied by ILL, Grenoble.

reflectivity

03 T T T T
8.5
best-fit == |
02s } | )
i rf?'f‘*
. g
2 e g=19
{ FWHM =279 aremin
015 b = 7,26 micron
0.1F
005 f 4
0L . i
495 100 105 110 115 120
1 T T Ll
Ir " d
) b TLIE X
1 Lo W Pomxt
| Mok p’ivr“' ' ARt K gt » J ) ) )
0 S Nl » *:"'473"" #: * _*% | Credits;: F. Frontera — University of Ferrara
1 T e ' ¥ * » !’X') g -
h 4
x | A ' L




First lens prototype & light

* Tile size: 15x15x2 mm3

* Mosaic spread: 3-4 arcmin
* Lens support: carbon fiber
* Focal length: 6 m

o™

o "B ” ‘

HEW of 15 arcmin at 200 keV

Credits;: F. Frontera — University of Ferrara



Chrenkov Atmospheric Telescopes

* Atmospheric Cherenkov Telescopes permit to perform
observations of astronomical objects emitting in gamma-rays with
energies from 50 GeV up to several TeV.

* The showers extend over many kilometers in length and few tens
to hundreds of meters in width and have their maximum located at
around 8-12 km altitude. Electrons and positrons in the shower

core, moves with ultra-relativistic speed and emits Cherenkov light.

* This radiation is mainly concentrated in the near UV and optical
band and can therefore pass mostly unattenuated to ground and
detected by appropriate instruments.

- Light flashes from showers have a very short duration, typically
2-3 ns in case of a g shower.



Chrenkov A

* Atmospheric Cherenkov Telesc .
observations of astronomical ob§
energies from 50 GeV up to sey

* The showers extend over manfi\
to hundreds of meters in width i
around 8-12 km altitude. Electi
core, moves with ultra-relativis

* This radiation is mainly concel 'y
band and can therefore pass m¢ 4 j
detected by appropriate instrun_~.

* Light flashes from showers hd
2-3 ns in case of a g shower.



Rockets & Satellites

~400Km

Balloons

~40Km

Airplanes

~10Km

Mountain-top
Obsarvatories

~4Km

Sealevel

0 Km
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Rockets & Satellites

~400Km

~0.0 1 ES1215+3030

-0.8 -0.6 -0.4 -0.2 -0.0 D.2 04 0.6 D8

(samma-
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The MAGIC Telescope Configuration

° Davies-Cotton reflector, which is the most commonly used configuration
for TeV telescopes, is used also for Magic

* Originally, the Davies-Cotton telescope was developed as a solar
concentrator and as such, it does not satisfy the rigorous requirements
of astronomy in the visible wavelength range

* A large reflector composed of many small, identical, spherical facets is
relatively inexpensive to build. The alignment of the optical system is
easy.

« A Davies-Cotton telescope consists of a primary mirror with parabolic
approximated configuration, formed by several coronas of spherical
mirrors each at different radii; the half of central radius coincides with
the Focal Length of the primary

* For Magic the focal length is 34 m and the diameter is 17 m; the
primary is formed by 240 panels of ~ 1 m2 each



The MAGIC Telescope Configuration

* Davies-Cotton reflector, which is the most commonly used configuration
for TeV telescopes, is used also for Magic

* Originally, the Davies-Cotton telescope was developed as a solar
centrator and as such it does not satisfy the rigorous requirements
' elength range
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nsists of a primary mirror with parabolic
approximated configuration, formed by several coronas of spherical
mirrors each at different radii; the half of central radius coincides with
the Focal Length of the primary

* For Magic the focal length is 34 m and the diameter is 17 m; the
primary is formed by 240 panels of ~ 1 m2 each



The MAGIC Telescope Configuration

° Davies-Cotton reflector, which is the most commonly used configuration
for TeV telescopes, is used also for Magic

* Originally, the Davies-Cotton telescope was developed as a solar
itratar and as <uch it does not satisfy the rigorous requirements
N ' elength range

approximated configurafio
mirrors each at different
the Focal Length of the p

* For Magic the focal leng
primary is formed by 240



MAGIC Telescope System

MAGIC-II
(non completato)
MAGIC-|

Geometry: Parabolic
Diameter: 17m
Collecting Area: 240 m?
F-number (f/D): 1

FOV: 3.8 deg
Slew time: 20s
Angular resolution: <3 arcmin
Energy Resolution: 30%

Operating Band: 50 GeV —50 TeV
Sensitivity (@1 TeV): 30 mCrab (1 single
telescope)
20mCrab (2 telescopes)

Sensitivity @ 50 GeV:

0.1 Crab (1 single telescope)
0.05 Crab (2 telescopes)



Glass Mirror Manufacturing

- Derived from a similar technique proposed by for the manufacturing
of X-Ray optics (XEUS)

* A thin glass sheet (1-2 mm) is elastically deformed so as to retain
the shape imparted by a master with convex profile. If the radius of
curvature is large, the sheet can be pressed against the master using
vacuum suction

* On the deformed glass sheet (under vacuum force) one glues a
honeycomb structure that provides the needed rigidity

* Then a second glass sheet is glued on the top in order to obtain a
sandwich

* After releasing the vacuum, on the concave side one deposits a
reflecting coating (Aluminum) and a thin protective coating (Quartz)



Glass Panel Manufacturing flow

PVD COATING
AL + SiO,



Master and panel in the making

Aluminum master 1040 x
1040 mm

Front and rear of a segment
Size = 985 x 985 mm Weight = 9.5 Kg.

Nominal curvature radius=35 m
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