Telescopes & Mirrors

Giovanni Pareschi INAF - Osservatorio Astronomico di Brera Via E. Bianchi 46 23807 Merate - Italy E-mail: giovanni.pareschi@brera.inaf.it

Outline

remarks on grazing - incidence for X-ray astronomy

why grazing incidence reflection
optical configurations for grazing-incidence mirrors

✓ making mirrors

othe replication method

✓examples of past and future X-ray telescopes

remarks on Gamma ray focusing telescopes and optics

B =*background flux, Tint* = *integration time,* ΔE = *integration bandwidth*

Moreover: much better imaging capabilities!

Simulation of two sources in a "Einstein" field as seen by a direct view detector

With the direct vie detector the second "weak" sources is lost in the background

X-ray astronomical optics history in pills (I)

• 1895: Roentgen discovers "X-rays"

• 1948: First succesfull focalization of an X-ray beam by a total-reflection optics (Baez)

• 1952: H. Wolter proposes the use of two-reflection optics based on conics for X-ray microscopy

• 1960: R. Giacconi and B. Rossi propose the use of grazing incidence optics for X-ray telescopes

• 1962: discovery by Giacconi et al. of Sco-X1, the first extra-solar X-ray source

 1963: Giacconi and Rossi fly the first (small) Wolter I optics to take images of Sun in X-rays

• 1965: second flight of a Wolter I focusing optics (Giacconi + Lindslay)

•1973: SKYLAB carry onboard two small X-ray optics for the study of the Sun

X-ray astronomical optics history in pills (II)

- 1978: Einstein, the first satellite with optics entirely dedicated to X-rays
- 1983: EXOSAT operated (first European mission with X-ray optics aboard)

•1990: ROSAT, first All Sky Survey in X-rays by means of a focusing telescope with high imaging capabilities

•1993: ASCA, a multimudular focusing telescope with enhanced effective area for spectroscopic purposes

• 1996: BeppoSAX, a broad-band satellite with Ni electroformed optics

• 1999: launch of Chandra, the X-ray telescope with best angular resolution, and XMM-Newton, the X-ray telescope with most Effective Area

• 2004: launch of the Swift satellite devoted to the GRBs investigation (with aboard XRT)

• 2005: launch of Suzaku with high throughput optics for enhanced spectroscopy studies with bolometers

Imaging experiments using Bragg reflection from "replicated" mica pseudo-cylindrical optics

E. Fermi – Thesis of Laurea, "Formazione di immagini con i raggi Roentgen" ("Imaging formation with Roentgen rays"), Univ. of Pisa (1922)

Thanks to Giorgio Palumbo!

X-ray optical constants

• at a boundary between two materials of different refraction index n_1 , n_2 reverse of the momentum P in the z direction:

• the amplitute of reflection is described by the Fresnel's equations: $r_{12}^{s} = \frac{n_{1}\sin\theta_{1} - n_{2}\sin\theta_{2}}{n_{1}\sin\theta_{1} + n_{2}\sin\theta_{2}}$ $r_{12}^{p} = \frac{n_{1}\sin\theta_{2} - n_{2}\sin\theta_{1}}{n_{1}\sin\theta_{2} + n_{2}\sin\theta_{1}}$

Total X-ray reflection at grazing incidence

• if vacuum is material #1 ($n_{1=}$ 1) \rightarrow the phase velocity in the second medium increases \rightarrow beam tends to be deflected in the direction opposite to the normal.

• Snell's law (n1 $\cos\theta_1 = n2 \cos\theta_2$) to find a critical angle for total reflection:

$$\theta_{crit} \approx \sqrt{2\delta} = \sqrt{\frac{r_0 \lambda^2 \rho N_{Av} f_1}{A\pi}}$$

$$\theta_{crit} \approx \sqrt{2\delta} = \sqrt{\frac{r_0 \lambda^2 \rho N_{Av} f_1}{A\pi}}$$

$$A = \text{atomico weight } f_1 = \text{scattering coeff.}$$

$$r_0 = \text{classical electron radius}$$

$$far from the fluorecence edges f_1$$

$$\approx Z \text{ and for heavy elements } Z/A \approx$$

$$0.5: \quad \theta_{crit} (arc \min) \approx 5.6\lambda(A)\sqrt{\rho}$$

$$e \text{ reflectivity loss due to scattering:}$$

$$I_R = I_0 \exp\left[-\left(\frac{4\pi \cdot n \cdot \sigma \cdot \sin \theta}{\lambda}\right)^2\right]$$

$$\sigma = \text{rms microroughn. level}$$

$$\sigma = \text{rms microroughn. level}$$

Other examples: C, Ni, Au

X-ray mirrors with parabolic profile

- perfect on-axis focusing
- off-axis images strongly affected by coma

The Abbe sine condition to have coma-free focusing mirrors

Coma: off-axis abberation caused by a different magnification of reflected rays, depending on the hitting position at the mirror surface

Typical blurring of a focal spot due to coma

> Coma free mirrors must satisfy the Abbe sine condition:

The surface defined by the intersection of each input ray with its corresponding output ray (principal or Abbe surface) must be a sphere around the image, i.e.:

Parabolic mirrors & the Abbe sine condition

The parabolic profile approximately obeys to the Abbe rule only near the vertex, i.e. at normal incidence but not for grazing incidence angles **the parabolic geometry is not optimal for X-ray telescopes**

Wolter's solution to the X-ray imaging

H. Wolter, Ann. Der Phys., NY10,94

The Wolter I mirror profile for X-ray astronomy applications

- it guarantees the minimum focal length for a given aperture
- it allows us to nest together many confocal mirror shells
- Effective Area: $8 \pi F L \theta^2 Refl.^2$

 $F = \text{focal length} = R / \tan 4\theta$ $\theta = \text{on-axis incidence angle}$ R = aperture radius

The Abbe condition and the Wolter I mirror profile

Alternative profiles derived from Wolter I

Wolter-Schwarzschild profile: it exactly satisfies the Abbe sine condition and it has been adopted for the Einstein mirrors; is coma free but it strongly affected by spherical aberration

<u>double-cone</u> profile: it better approximates the Wolter I at small reflection angles: It is utilized for practical reasons (- cost + effective area). Intrinsic on-axis focal blurring given by:

$$HEW \propto \frac{LR}{F^2}$$

polynomial profile: parameters have been specifically optimized to maintain the same HEW in a wide field of view

(introducing small aberration on-axis the off-axis imaging behavior is improved \rightarrow same principle of the Ritchey-Chretienne normal-incidence telescope in the optical band)

Kirpatrick-Baez Telescopes

➤ parabolic-profile curved mirrors in just one direction → to focus a beam in a single point another identical mirror has to be orthogonally placed with respect to the first one;

it is possible to nest many confocal mirrors to increase the effective area;

compared to a Wolter I system with same focal length and same incidence angle (on-axis), angles are two time larger;

imaging capabilities result to be limited by some inherent aberration;

NB: by means of a K-B optics was performed the first successful attempt of the focalization of an X-ray beam in total-reflection regime (1948)

Lobster-Eye optics

>system similar to spherical normal-incidence mirrors but, in this case, the beam impinges on the convex part of the entrance pupil;

> the pupil is formed by a system o channels with square section uniformly distributed around a spherical surface of radius R. To be focused in a single point a collimated beam has to sustain the reflection by two orthogonal walls of a same channel;

> the photons are focused onto points distributed on a spherical surface of radius R/2;

Manufacturing techniques utilized so far1.Classical precision optical polishing and grindingProjects:Einstein, Rosat, ChandraAdvantages:superb angular resolutionDrawbacks:high mirror walls $\rightarrow \rightarrow$ small number of nestedmirror shells, high mass, high cost process

Credits: ES

2. <u>Replication</u> Projects: EXOSAT, SAX, JET-X/Swift, XMM, ABRIXAS (→ *examples follow hereafter*)

Advantages: good angular resolution, high mirror "nesting" the same mandrels for many modules Drawbacks: relatively high cost process; high mass/geom. area ratio (if Ni is used).

3. "<u>Thin foil mirrors"</u> Projects: BBXRT, ASCA, SODART, ASTRO-E

Advantages: high mirror "nesting" possibility, low mass/geom. area ratio (the foils are made of Al), cheap process Drawbacks: until now low imaging resolutions (1-3 arcmin)

Present Astronomical optics technologies: HEW Vs Mass/geometrical area

Chandra

- Focal length = 10 m
- 1 module, 4 shells
- Coating = Iridium
- Angular Resolution = 0.5 arcsec HPD

Chandra: a fantastic angular resolution

Rosat: HPD = 3 arcsec

Chandra: HPD = 0.5 arcsec

Beppo-SAX soft X-ray (0.1 - 10 keV) concentrators

- Wolter I double-cone approx. Au coating
- 4 modules 30 shells/mod.
- F.L. = 180 cm Max diam = 16.1 cm
- A_{eff} @ 1 keV = 85 cm² /module
- *HEW= 60 arcsec (corresponding to the two-cones geom. aberration!)*

GRB970228

JET-X (optics ready since 1996) / Swift XRT (2004) optics

- Wolter I profile Au coating (pathfinder of XMM)
- 2 mod. (JET-X) / 1 mod (Swift) 12 shells/mod.
- F.L. = 350 cm Max diam = 30 cm
- *A_{eff} @ 1 keV= 150 cm² /module*

XMM-Newton (operational since dec. 1999)

- Wolter I profile Au coating
- 3 mod. 58 shells/mod.

- A_{eff} @ 1 keV= 1500 cm² /module
- HEW= 15 arcsec
- F.L. = 750 cm Max diam = 70 cm

Credits: ESA

Replication methods

 Ni electroforming replication (SAX, JET-X/Swift, XMM, ABRIXAS, e-ROSITA, SIMBOL-X, SVOM/XIAO)

 epoxy replication: EXOSAT (Be), WFXT (Alumina & SiC prototypes), EDGE/XENIA?

WFXT (feasibility study 1997-1998) - Polynomial mirrors

WFXT (epoxy replication su carrier in SiC) - \emptyset = 60 cm

F. L. = 300 cm

HEW = 10 arcsec

The focusing problem in the hard X-ray region (> 10 keV)

the geometrical areas with usual focal lengths
 (> 10 m) are in general <u>negligible</u>

 $\vartheta_{crit} \propto 1$

 $A_{eff} \approx F^2 x \theta_c^2 x R^2$

Focal Length Vs. Diameters for SIMBOL-X and other X-ray telescopes

 $A_{eff} \approx F^2 x \ \theta_c^2 x \ R^2$

The formation flight contribution

Wide band multilayers

X-ray supermirrors

Optical supermirrors in a beetle skin

Top-level scientific requirements

Energy band:	~0.5 - ≥ 80 keV
Field of view (at 30 keV):	\geq 12' (diameter)
On-axis effective area:	$ \ge 100 \text{ cm}^2 \text{at } 0.5 \text{ keV} \ge 1000 \text{ cm}^2 \text{at } 2 \text{ keV} \ge 600 \text{ cm}^2 \text{at } 8 \text{ keV} \ge 300 \text{ cm}^2 \text{at } 8 \text{ keV} \ge 100 \text{ cm}^2 \text{at } 30 \text{ keV} \ge 50 \text{ cm}^2 \text{at } 80 \text{ keV (goal)} $
Detectors background	$< 2 \times 10^{-4} \text{ cts s}^{-1} \text{ cm}^{-2} \text{keV}^{-1} \text{ HED}$ $< 3 \times 10^{-4} \text{ cts s}^{-1} \text{ cm}^{-2} \text{keV}^{-1} \text{ LED}$
On-axis sensitivity	≤ 10 ⁻¹⁴ c.g.s.(~0.5 μCrab), 10-40 keV band, 3σ, 1Ms,
Line sensitivity at 68 keV	$< 3 \times 10^{-7}$ ph cm ⁻² s ⁻¹ (3 σ 1Ms)
Line sensitivity at 66 net	
Angular resolution	$\leq 20"(HPD), E < 30 \text{ keV}$ $\leq 40"(HPD) @ E = 60 \text{ keV (goal)}$
Angular resolution Spectral resolution	$\leq 20"(HPD), E < 30 \text{ keV} \\ \leq 40"(HPD) @ E = 60 \text{ keV (goal)} \\ E/\Delta E = 40-50 \qquad \text{at } 6-10 \text{ keV} \\ E/\Delta E = 50 \qquad \text{at } 68 \text{ keV (goal)} \\ \end{cases}$
Angular resolution Spectral resolution Absolute timing accuracy	$\leq 20"(HPD), E < 30 \text{ keV} \\ \leq 40"(HPD) @ E = 60 \text{ keV (goal)} \\ E/\Delta E = 40-50 \qquad \text{at } 6-10 \text{ keV} \\ E/\Delta E = 50 \qquad \text{at } 68 \text{ keV (goal)} \\ 100 \ \mu\text{s (50 } \mu\text{s goal)} \\ \end{cases}$
Angular resolution Spectral resolution Absolute timing accuracy Absolute pointing reconstruction	$\leq 20"(HPD), E < 30 \text{ keV} \\\leq 40"(HPD) @ E = 60 \text{ keV (goal)} \\E/\Delta E = 40-50 \qquad \text{at } 6-10 \text{ keV} \\E/\Delta E = 50 \qquad \text{at } 68 \text{ keV (goal)} \\100 \ \mu\text{s (50 } \mu\text{s goal)} \\\sim 3'' (\text{radius, } 90\%) (2'' \text{ goal})$
Angular resolution Spectral resolution Absolute timing accuracy Absolute pointing reconstruction Mission duration	$\leq 20"(HPD), E < 30 \text{ keV}$ $\leq 40"(HPD) @ E = 60 \text{ keV (goal)}$ $E/\Delta E = 40-50 \qquad \text{at } 6-10 \text{ keV}$ $E/\Delta E = 50 \qquad \text{at } 68 \text{ keV (goal)}$ $100 \ \mu\text{s (50 } \mu\text{s goal)}$ $\sim 3'' (\text{radius, } 90\%) (2" \text{ goal})$ $3 \ \text{years including commissioning and calibrations (2 years of scientific program) + provision for a possible 2 year extension}$

Simbol-X Optical Design

Min-Max Diameter	250 - 650 mm	
Focal Length	20000 mm	
Mirror Height	600 mm	
Configuration	Wolter I	
Number of Mirror shells	100	
Min-Max incidence angles	0.1° - 0.25°	
Min-Max wall	0.25 0.55 mm	
thickness_	0.25 - 0.55 11111	
Total Mirror Mass	287 kg	

NB: thickness trend 2 times less XMM-Newton

Simbol-X Optical Design

Angular resolution for past & future Hard X-ray Experiments

Experiment	Year	"Imaging"	Angular
		technique	resolution
SAX-PDS	1996	Rocking	> 3600 arcsec
		collimator	(collimator
			pitch)
INTEGRAL-	2002	Coded mask	720 arcsec
IBIS			(mask pitch)
HEFT (baloon)	2005	Multilayer	> 90 arcsec
		optics	HEW
NUSTAR	2011	Multilayer	40-60 arcsec
		Optics	HEW
SIMBOL-X	2014	Multilayer	15-20 arcsec
		Optics	HEW

Simbol-X Optics

- Heritage from XMM-Newton : nickel shells obtained by electroforming replication method; low mass obtained via a reduced thickness of shells
- Coating : multi-layer Pt/C needed for requirement on large FOV and on sensitivity up to > 80 keV


```
Focal length : 20 m
Shell diameters : 30 to 70 cm
Shell thickness : 0.2 to 0.6
mm
Number of shells : 100
```

N.B. I: The optics module will have both sides covered with thermal blankets N.B. II: a proton diverter will be implemented

Integration of thin mirror shells

Integration of thin mirror shells

Multilayer deposition concept

Calibration of the 2 mirror shell prototype at Panter MPE

Calibration of 2 mirror shell prototype at Panter MPE

Energy (keV)	HEW (arcsec) 291 shell	HEW (arcsec) 295 shell
1.5	23	22.5
8	24	27.5
20	27	29
35	31	49
50	33	49

Sensitivity (cgs) $(3 \times 10^{-18}) @ 0.2-8 \text{ keV}; 4$ _

Effective Area

- 1 (1.5) m² @ 0.2 keV
- 5 m² @ 1 keV
- 2 m² @ 7 keV
- 1 m² @ 10 keV
- (0.1) m² @ 30 keV

Angular Resolution 5 (2) arcsec @ < 10 keV 10 arcsec @ 40 keV

Field-of-View

- 7 (10) arcmin diameter: WFI, HXI
- 1.7 arcmin diameter: NFI

XEUS X-ray optics requirements

ITEM	Requirement	Goal
Angular		
Resolution (HFW)	5 arcsec	2 arcsec
Collecting Area @ 1 keV	5 m²	5 m ²
Collecting Area @ 7 keV	2 m ²	2m ²

N.B. data from the proposal document

Optics mass budget

Mirrors	Support	ancillary	Total
882 kg	176 kg	238 kg	1296 kg

N.B. data from the proposal document

Optics error budget

Specification	Inherent	Intrinsic	Extrinsic	Enviro	Total
(arcsec)				nment	
Goal	1.4	1.2	0.5	0.5	2
Requirement	1.8	3.7	2	2	5

N.B. data from the proposal document

Optics Characteristics

Characteristic	Value
Pore size	$0.6 \times 1.5 \text{ mm}^2$
Aperture radii	0.67-2.1 m
Grazing reflection angles	0.27-0.86 degrees
Focal length	35 m
Plate scale	170_m/arcsec

N.B. data from the proposal document

XMM

0.7 m

Total reflecting surface to be produced

2.5 x

Need of a manufacturing process scalable at a high volume production industrial level!

Off-Axis Angle (arcmin)

N.B.: concept introduced by D. Willingale et al, Capri 1994

Pore Optics technology

Credits: ESA & Cosine

Cellular solids: light weight structures with a very high stiffness SEARCH INSIDE!^M

Regular cellular structures

Preliminary imaging tests onto two-reflection optics (I)

Credits: ESA, Cosine, MPE

Collon et al, SPIE Proc 67898, in press (2007)

Alternative approach: hot sluping of thin glass segments

Wolter I preliminary design for XEUS (I) · 3 petal rings, respectively composed by 12 -24 - 36 petals, arranged on the supporting structure;

• Wolter 1 with focal length 35m; Parabola and hyperbola are 0.6m long (0.3+0.3); 2 mm x 0.15 mm ribs every ~75 mm;

•The total number of mirror shells is 403 made of slumped glass with constant thickness (0.15 mm);

Petal Ring #	Rmin [mm]	Rmax [mm]	Mirror Shells number
1	610	988	192
2	1130	1508	123
3	1660	2027	88

Weight including CFRP Structure ~ 2 tons

Wolter I design effective area

Cold slumping glass approach

K-B "chocolate" type configuration

- Possibility to use vacant space
- 4 equal modules
- 6 sets of equal blocks for each direction

• F=35 m

- N1=260 N2=258
- _ _=0,023 rad
- F=25 m
 - N1=190 N2=185
 - _=0,032 rad
- F=20 m
 - N1=151 N2=153

- _=0,04 rad

LAMAR telescope (1988)_

Fig. 2. View of the complete mirzor ("front and near modulus) in a vacuum chamber at the MEPC X-Ray Colibration Facility. A 246-or alli (which is not opened to use foil height) the inservational direction of the x-ray beam.

•D. Fabricant, L.M. Cohen, P. Gorensrein

Mechanical cold shaping technology

- Mirror mudule 20 X 30 cm
- •F = 3,4 m

•Effective Area at 1,49 keV 82,2 cm²

•Effective Area at 8,01 keV 9,2 cm²

•HEW 30 arcsec at 1,5 keV

Effective area

- Effective area: K-B vs Wolter I for diffent focal lenght
- Pt+C coating

Hard X-ray Focusing by mosaic crystals

Bragg diffraction from a crystal lattice
 reflectivity peaks at:

2 d sin θ = n λ

d typical value of a few Angstroms

• mosaic crystals: at microscopic level a structure of microcrystals almostparallel to the external crystal surface. The distribution of the crystallites normals is described by a Gaussian law

• each crystallite reflects in an independent way (without any interferometric coupling with the beams reflected from the other crystallites) \rightarrow the integrated reflectivity results to be much larger (>100) than for a perfect crystal case

Why crystal diffraction for high energy telescopes

 Focusing optics in the hard X-/soft gamma-ray band is crucial for a significant leap

• The hard X-ray band (E<80 keV) can be covered with multilayer mirrors (NuStar, NeXaray Simbol-X).

•The higher energy band (>80 keV) can be efficiently covered with Laue lenses.

Example of configuration suitable for GRI low energy lens (200-550 keV)

Parameter			600					Ge(111) Cu(200)	
			500		M	A		Cu(111) — Total —	
Focal length (m)	100		400		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		M		
Nominal passband (keV)	200-530	cm ²							
Inner radius (cm)	88	eff -	300						
Outer radius (cm)	185	A	200			<u> </u>	γ		
Crystal material	Ge[111], Cu[111], Cu[200]					V //	\sim		
Mosaic spread (arcmin)	0.5		100						_
Tile cross section (mm^2)	15×15		ol			ban	L	LA	
Tile thickness (mm)	optimized		10	00	200 300	400	500	600	700
Number of crystal rings	61					Energy - Kev			
No. of tiles	17661 (Ge[111]), 3254 (Cu[200]), 3386 (Cu[111])								
Crystal weight (kg)	155		-	6e-08					
Effective area (cm^2) @ 200 keV	500	C C	5.	5e-08	h,				
Effective area (cm^2) @ 400 keV	530	ke V	4	5e-08		\			
Effective area (cm^2) @ 511 keV	430	m ² s		4e-08					
Half power radius(mm)	12	oh/(c	3.	5e-08		~			
		tv - 1	2	3e-08					
		itivi	2.	5e-08			<u> </u>		
		Sens		2e-08			~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J

3 sigma sensitivity, $T=10^6$ s

1.5e-08 1e-08

> 150 200 250 300 350 400 450 500 550 Energy - keV

Crystal material: Cu(111)

• Available mosaic spread: 3-4 arcmin(now also available with lower spread);

First lens prototype & light

- Tile size: 15x15x2 mm3
- Mosaic spread: 3-4 arcmin
- Lens support: carbon fiber
- Focal length: 6 m

HEW of 15 arcmin at 200 keV

Credits:: F. Frontera – University of Ferrara

Chrenkov Atmospheric Telescopes

• Atmospheric Cherenkov Telescopes permit to perform observations of astronomical objects emitting in gamma-rays with energies from 50 GeV up to several TeV.

• The showers extend over many kilometers in length and few tens to hundreds of meters in width and have their maximum located at around 8-12 km altitude. Electrons and positrons in the shower core, moves with ultra-relativistic speed and emits Cherenkov light.

• This radiation is mainly concentrated in the near UV and optical band and can therefore pass mostly unattenuated to ground and detected by appropriate instruments.

Light flashes from showers have a very short duration, typically
2-3 ns in case of a g shower.
Chrenkov Atmo.

• Atmospheric Cherenkov Telesc observations of astronomical ob energies from 50 GeV up to sev

• The showers extend over man to hundreds of meters in width around 8-12 km altitude. Elect core, moves with ultra-relativis

 This radiation is mainly concer band and can therefore pass me detected by appropriate instrur

Light flashes from showers ho
2-3 ns in case of a g shower.

The MAGIC Telescope Configuration

 Davies-Cotton reflector, which is the most commonly used configuration for TeV telescopes, is used also for Magic

• Originally, the Davies-Cotton telescope was developed as a solar concentrator and as such, it does not satisfy the rigorous requirements of astronomy in the visible wavelength range

• A large reflector composed of many small, identical, spherical facets is relatively inexpensive to build. The alignment of the optical system is easy.

• A Davies-Cotton telescope consists of a primary mirror with parabolic approximated configuration, formed by several coronas of spherical mirrors each at different radii; the half of central radius coincides with the Focal Length of the primary

• For Magic the focal length is 34 m and the diameter is 17 m; the primary is formed by 240 panels of ~ 1 m^2 each

The MAGIC Telescope Configuration

• Davies-Cotton reflector, which is the most commonly used configuration for TeV telescopes, is used also for Magic

• Originally, the Davies-Cotton telescope was developed as a solar concentrator and as such it does not satisfy the rigorous requirements

elength range

f many small, identical, spherical facets is The alignment of the optical system is

Insists of a primary mirror with parabolic

approximated contiguration, tormed by several coronas of spherical mirrors each at different radii; the half of central radius coincides with the Focal Length of the primary

• For Magic the focal length is 34 m and the diameter is 17 m; the primary is formed by 240 panels of ~ 1 m^2 each

The MAGIC Telescope Configuration

 Davies-Cotton reflector, which is the most commonly used configuration for TeV telescopes, is used also for Magic

• Originally, the Davies-Cotton telescope was developed as a solar concentrator and as such it does not satisfy the rigorous requirements elength range

approximated contiguration mirrors each at different the Focal Length of the pr

 For Magic the focal leng primary is formed by 240

MAGIC Telescope System

- Geometry:
- Diameter:
- Collecting Area:
- F-number (f/D):
- FOV:
- Slew time:
- Angular resolution:
- Energy Resolution:
- Operating Band:
- Sensitivity (@1 TeV):
- Sensitivity @ 50 GeV:

Parabolic 17m 240 m² 1 3.8 deg 20 s < 3 arcmin 30% 50 GeV – 50 TeV 30 mCrab (1 single telescope) 20mCrab (2 telescopes) 0.1 Crab (1 single telescope) 0.05 Crab (2 telescopes)

Glass Mirror Manufacturing

 Derived from a similar technique proposed by for the manufacturing of X-Ray optics (XEUS)

• A thin glass sheet (1-2 mm) is elastically deformed so as to retain the shape imparted by a master with convex profile. If the radius of curvature is large, the sheet can be pressed against the master using vacuum suction

• On the deformed glass sheet (under vacuum force) one glues a honeycomb structure that provides the needed rigidity

• Then a second glass sheet is glued on the top in order to obtain a sandwich

• After releasing the vacuum, on the concave side one deposits a reflecting coating (Aluminum) and a thin protective coating (Quartz)

Glass Panel Manufacturing flow

Master and panel in the making

Aluminum master 1040 × 1040 mm

Front and rear of a segment

Size = 985 x 985 mm Weight = 9.5 Kg.

Nominal curvature radius= 35 m

