

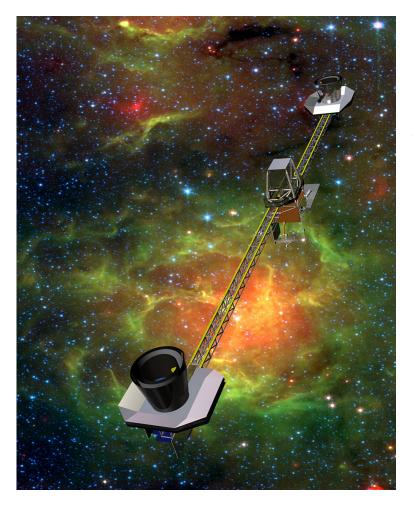
An Overview of Studied Far-Infrared Mission Concepts and Their Measurement Capabilities

May 6, 2014

SPace Infrared Telescope for Cosmology and Astrophysics

Name of concept:

Space Infrared Telescope for Cosmology and Astrophysics (SPICA) References are papers by Nakagawa et al., and SPICA web site http://www.ir.isas.jaxa.jp/SPICA/SPICA_HP/index_English.html


Architecture:

- A 3.2-meter telescope cryogenically cooled to <6 K, with four focal plane instruments:
- SAFARI 34 210 µm;
- Mid-IR Camera and Spectrometer 5 38 μm (MCS);
- SCI Coronographic Instrument (SCI); and
- Focal Plane Camera (FPC)

- Constrain the emission of ground state $\rm H_{2}$ emission from the first (population III) generation of stars
- Detect biomarkers in the mid-infrared spectra of exo-planets and/or the primordial material in protoplanetary disks
- Detect H₂ haloes around galaxies in the local Universe
- Detect planets in the habitable zones of the nearest few stars
- Detect the far infrared transitions of PAHs in the ISM
- Detect dust formation in supernovae in external galaxies, and determine the origin of dust in high redshift galaxies

/; to 32)(λ/]		
to 32)(λ/I		
engths		
.B) at R =		
all-sky in a year; large area instantaneous FoR		
ınknown.		
-		

Concept maturity Revised System Requirements Review (SRR) in 2014

SPIRIT

Space Infrared Interferometric Telescope

Mission Concept Summary

Name of concept:

Space Infrared Interferometric Telescope (SPIRIT) References available at http://astrophysics.gsfc.nasa.gov/cosmology/spirit/

Architecture:

Structurally-connected spatio-spectral interferometer with dense uv plane coverage out to maximum baseline length 36 m. Two 1 m diameter afocal off-axis telescopes serve as light collectors. The telescopes and instrument are cryocooled to ~4 K, and the focal plane cooled to ~30 mK. MKID or TES bolometer detectors in arrays with maximum pixel count 14 x 14 pixels cover an instantaneous FoV 1 arcmin in diameter.

- Image protoplanetary disks and measure the distributions of water vapor and ice to learn how the conditions for habitability arise during the planet formation process;
- Image structures in a large number of debris disks to find and characterize unseen exoplanets; and
- Make profound contributions to our understanding of the formation, merger history, and star formation history of galaxies, including the role of AGN in galaxy evolution.

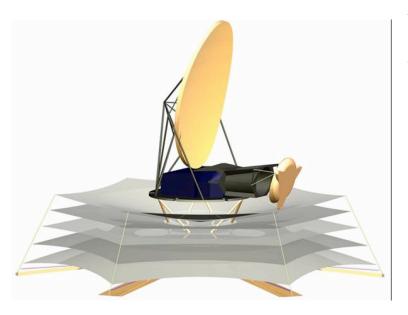
Parameter	Unit	Value
Wavelength range: µm		25 - 400
Angular resolution: arcsec		0.3 (λ/100 μm)
uv plane filling fraction:		Dense coverage in both dimensions. Baseline coverage:
		"zero spacing" plus 6 to 36 m. May be tailored to source.
Spectral resolution:	$(=\lambda/\Delta\lambda)$	>3000 over entire wavelength range
Instantaneous FoV	arcmin	1
Sensitivity to		
Spectral lines	W m ⁻²	2.9, 1.7, 1.4 and 1.3x10 ⁻¹⁹ at band-center wavelengths
_		35, 70, 140, and 280 μm, respectively (5σ, 24 hours)
Continuum	μJy	14, 20, 31, and 48 at band-center wavelengths
	-	35, 70, 140, and 280 μm, respectively (5σ, 24 hours)
Field of Regard:		40° band centered on ecliptic plane

Potential launch vehicle(s):

Atlas V 531 with medium-length fairing, or equivalent (flight system is volume-limited by the fairing dimensions)

Orbit:

Sun-Earth L2


Technology

Description	TRL	
Detectors (MKID or TES bolometers)	3	challenge is to produce detectors with NEP ~ 10^{-19} W Hz ^{-1/2} with time constant ~200 µsec; modest array dimensions (14 x 14 pixels or smaller) (Benford et al. 2007)
Cryo-thermal system w/ cryocoolers	4	
		challenge is to demonstrate sufficient, reliable cooling power and thermal system performance. Detailed cooling requirements are known (DiPirro et al. 2007)
Wide-field spatio-spectral interferometry	5	
		challenge is to demonstrate thorough undertanding of practical limitations, and to develop and verify performance of the hyperspectral image synthesis software (Leisawitz et al. 2012)

Concept maturity

Conducted a robust pre-Phase A study. Grass roots and independent parametric cost estimates agree to within 20%.

Cryogenic Aperture Large Infrared Space Telescope Observatory

Mission Concept Summary

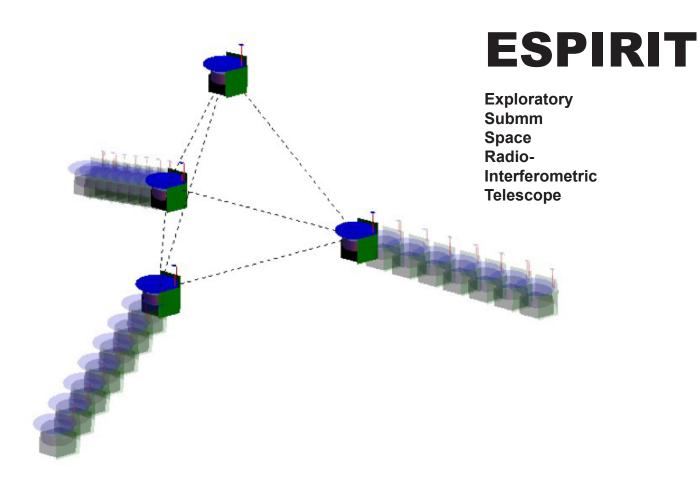
Name of concept:	Cryogenic Aperture Large Infrared Space Telescope Observatory (CALISTO)
Architecture:	4 m x 8 m aperture off axis Gregorian telescope cooled to ~4K. Unblocked design for extremely low sidelobes and stray pickup Wavelength coverage: 30μm - 300μm
Science drivers:	 Exploring SubMM galaxies at high redshift with FIR line spectroscopy The first supernovae Intergalactic molecular hydrogen Star formation as function of galactic environment Tans-Neptunian Obects (TNOs) Water in the Solar System

Parameter	Unit	Value
Wavelength range:	μm	30 - 300
Angular resolution:	arcsec	1.2 - 12 (minimum beam size)
uv plane filling fraction:		Single antenna high-quality PSF
Spectral resolution:	$(=\lambda/\Delta\lambda)$	1000 (10 ⁶ with heterodyne)
Instantaneous FoV	arcmin	
Sensitivity to		
Spectral lines	W m ⁻²	$5\sigma 1 \text{ hr} = 2.2 \times 10^{-20} \text{ for } d\nu/\nu = 1 \text{ and } 6.2 \times 10^{-22}$
		for $dv/v = 0.001$
Continuum	μJy	21 (5σ, 1 hr)
Confusion Limit		5 μJy @ 70μm 8 beams/source
Field of Regard:		Survey entire "dark" sky in 2 year mission plus pointed observations and small scale mapping

Atlas V 551

Orbit:

L2 Halo


Technology

Description

TRL

Concept maturity

• JPL Team X study White paper submitted to 2010 Decadal Survey.

Mission Concept Summary

Name of concept:

Exploratory Submm Space Radio-Interferometric Telescope (ESPRIT) Information source: Frank Helmich, private communication (Ref. Wild et al. 2006, Proc. SPIE 6265, 62651Z; updated by Baryshev for ESA L2/L3 white paper)

Architecture :

Free-flying THz heterodyne interferometer comprised of four 3.5 m off-axis telescopes with deployable secondary mirrors. Satellites drift in 3D to sample a variety of interferometric baselines up to 50 m (extendable to longer). Correlation in space, with calculated visibility data downlinked.

- Understand the formation of stars and planets by following the evolution of disks around forming stars
- Understand the role of starbursts in the evolution of galaxies

Parameter	Unit	Value
Wavelength range:	μm	50 - 600 in several discrete channels (frequency bands TBD)
Angular resolution:	arcsec	0.2 (λ/100 μm)
uv plane filling fraction:		dense, since 50 m with 2 cm/s drift would take close to one
2		hour for travel, giving a fair amount of integration at the
		longer baselines
Spectral resolution:	$(=\lambda/\Delta\lambda)$	3 x 10 ⁵
Instantaneous FoV	arcmin	0.1, with possibility to extend by mosaicing
Sensitivity to		
Spectral lines	μJy	3 x 10 ⁵ in 1hour on resolved lines, assuming 6 telescopes
-	•	(Wild et al.)
Continuum	μJy	17000 in 1 hour
Field of Regard:	·	all-sky two times per year; large area instantaneous FoR

Potential launch vehicle(s): Ariane 5 ECA

Orbit: Sun-Earth L2

Technology

Description	TRL	
cold gas thrusters collision avoidance control system SIS THz mixers close to quantum limit HEB THz mixers close to the quantum limit	9 0 6 7	GAIA heritage swarms are coming within ESA ALMA, HIFI GREAT on SOFIA
space-qualified correlator	?	
Quantum Cascade Laser	3	will reach TRL 6 with STO-2 balloon flight
LO distribution system	0	builds on ALMA and GPS (TRL 6 and 9), this is not considered an item of long development
4 K crycooler (Planck heritage)	9	

Concept maturity

pre-Phase A (SRON study by Helmich et al. 2005)

Millimetron

Mission Concept Summary

Name of concept: Millimetron

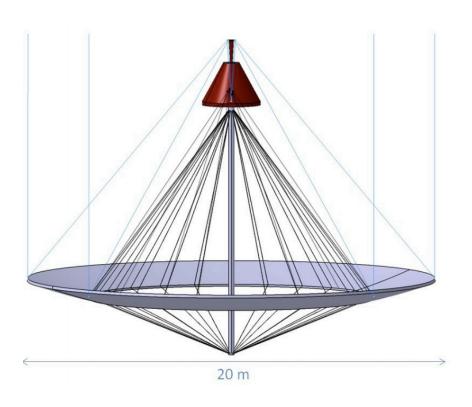
Architecture:10m diameter deployable telescope cooled to < 6 K
Central 3m portion usable to 60 microns; full 10 m to 150 microns
Short-wave Camera & Spectrometer(SACS): 70, 125, 230, 375 μm & grating spectrometer
Long-wave Camera & Spectrometer: FTS covering 300 μm to 3 mm wavelength
Heterodyne instrument covering 500 GHz to 5 THz with 3 & 7 pixel arrays
Space VLBI (S-VLBI) 18 GHz to 720 GHz with ALMA & other ground-based facilitiesScience drivers:

- Black hole/event horizon/accretion disk physics (S-VLBI)
- Sunyaev-Zeldovich effect
- Distant galaxies and star formation through cosmic time
- Diffuse ISM and evolution
- Astrochemistry beyond Herschel

Parameter	Unit	Value	
Wavelength range:	μm		
Angular resolution:	arcsec	S-VLBI: 4x10 ⁻⁸	
-		SACS: 1@ 50 μm - 10 @ 450 μm; LACS: 7.5 @ 300μm -	
		42 @ 3mm	
uv plane filling fraction:		Single aperture telelscope	
Spectral resolution:	$(=\lambda/\Delta\lambda)$	SACS 500 - 100; LACS: 1.2 GHz (500-80)	
-		Heterodyne: 10 ⁶	
Instantaneous FoV	arcmin	modest: \leq 10 diffraction-limited beams	
Sensitivity to			
Spectral lines	W m ⁻²	TBD	
Continuum	μJy	TBD	
Field of Regard:		Primarily pointed observations and small-scale mapping capability	

Potential launch vehicle(s):

Orbit:


L2 halo

Technology

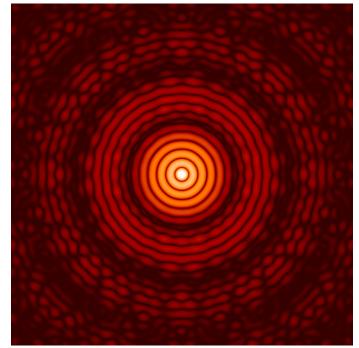
Description NA TRL

Thinned Aperture Light Collector

Mission Concept Summary

Name of concept:

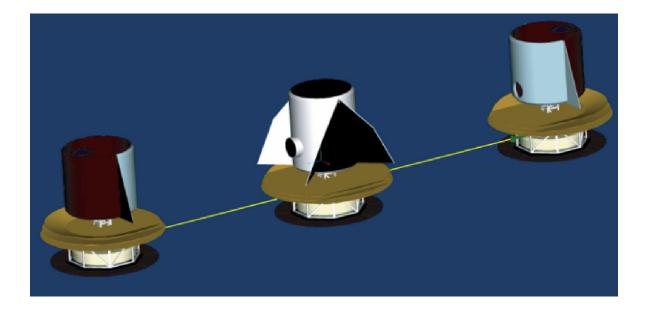
Thinned Aperture Light Collector (TALC) Information source: Marc Sauvage, private communication.


Architecture:

A "single-dish" concept consisting of an annular, deployable mirror, with 20m outer diameter and 14m inner diameter. The annular concept allows a fan-like deployment scheme, compatible with an extremely compact volume for the launch configuration.

- wide-field imaging, surveys of star forming regions in the Galaxy and beyond
- \bullet AGN-Star formation co-evolution on the z=1-3 epoch
- High spectral resolution studies of the ISM (water, HD...)

Parameter	Unit	Value	
Wavelength range:	μm	50-500	
Angular resolution:	arcsec	<1 at 100 µm	
uv plane filling fraction:		As a "single-dish" concept TALC offers continuous coverage	
		of a fraction of the UV plane, but data processing	
Spectral resolution:	$(=\lambda/\Delta\lambda)$	From a few for the imaging instrument to very high	
		for heterodyne spectrometers.	
Instantaneous FoV	arcmin	~2	
Sensitivity to			
Spectral lines	W m ⁻²	TBD	
Continuum	μJy	0.1 mJy 5σ 1hr (with R~5)	
Field of Regard:		Foreseen implemetation resembles the JWST,	
c .		thus the FoR is the whole sky	
Potential launch vehicle(s):	Ariane 6 with electric propulsion module to reach L2		
Orbit:	Sun-Earth L2		
Technology	not relevant at this point		

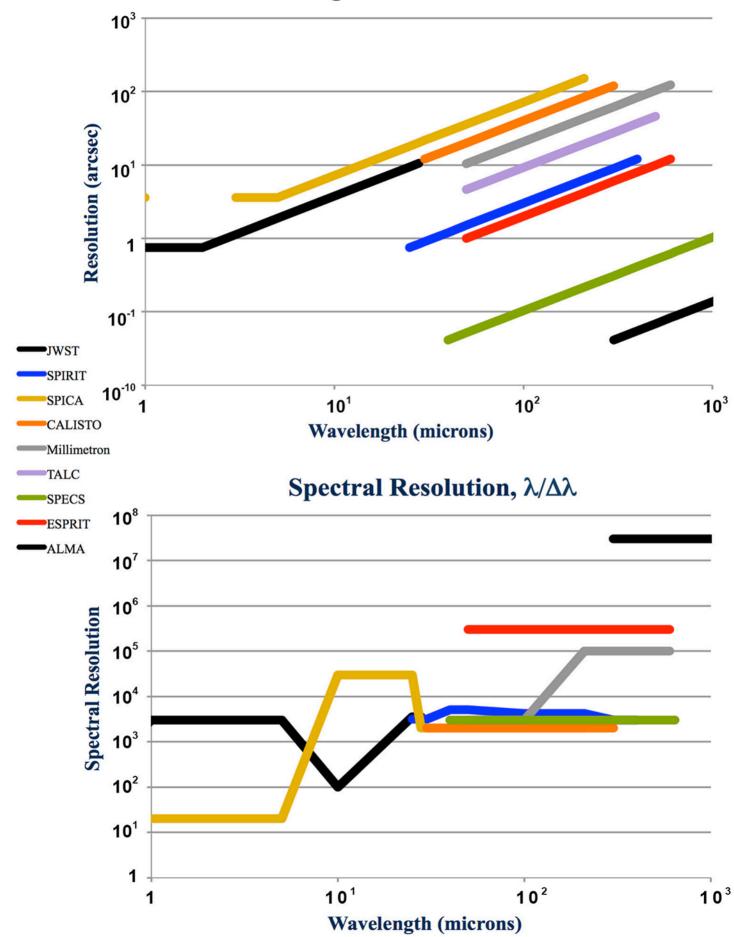

Concept maturity TALC is essentially an "immature" concept, that we develop to explore the feasibility and constraints related to placing large apertures in space.

TALC's PSF for an annular segmented mirror. The central peak has 0.9" FWHM.

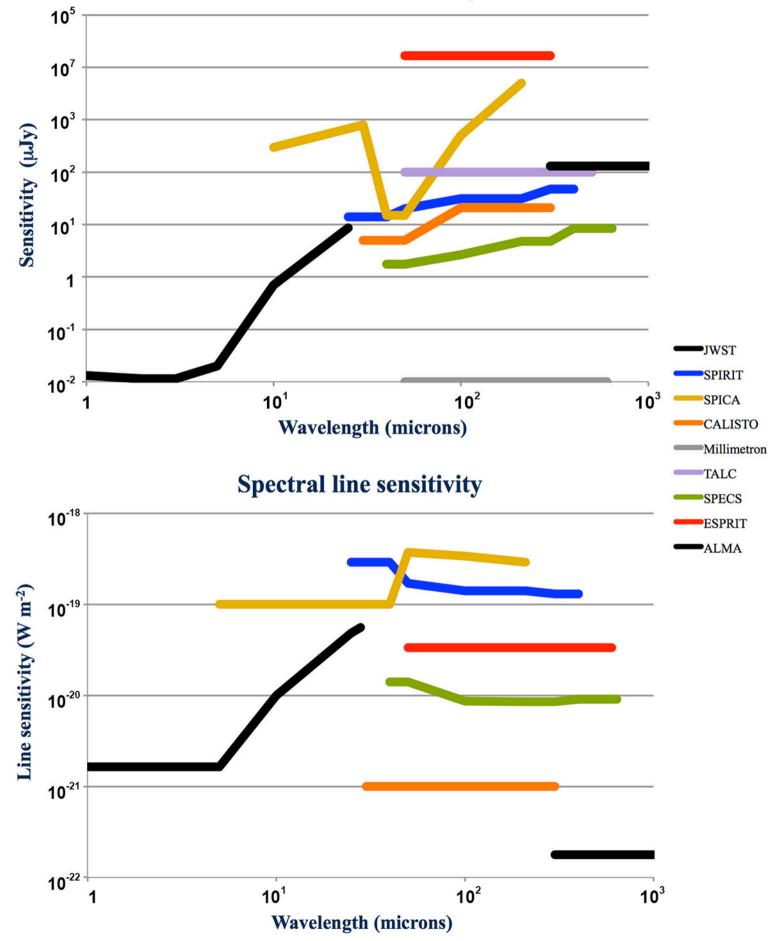
Submillimeter Probe of the Evolution of Cosmic Structure

Mission Concept Summary

Name of concept:Submillimeter Probe of the Evolution of Cosmic Structure (SPECS)
Primary reference: Harwit et al. NASA Vision Mission concept study,
2005, and subsequent papers


Architecture:

Tether-connected spatio-spectral interferometer with dense uv plane coverage out to maximum baseline length 1 km. Two 4 m diameter afocal off-axis telescopes serve as light collectors. The telescopes and instrument are cryocooled to \sim 4 K, and the focal plane cooled to \sim 30 mK. MKID or TES bolometer detectors in arrays with maximum pixel count 14 x 14 pixels cover an instantaneous FoV 1 arcmin in diameter.


- Characterize the epoch of first generation star formation
- Probe the luminosity evolution and physical conditions in galaxies since the epoch at which they formed
- Observe the chemical and dynamical processes that lead to the formation of stars
- Image the dusty disks around newly formed stars to study temperature, density, grain size distribution and chemical fractionation to learn how planetary systems form

Parameter		Unit		Value
Wavelength r	ange:	μm		40 - 640
Angular resolution: arcsec		:	0.05 (λ/250 μm)	
uv plane fillir	ng fraction:			Dense coverage in both dimensions. Baseline coverage: "zero spacing" plus ~10 m to 1 km. May be tailored to source.
Spectral resol	lution:	$(=\lambda/\Delta)$	λ)	~1000 - 3000, with possible heterodyne mode for $>10^5$
Instantaneou	s FoV	arcmi	n	1
Sensitivity to				
	Spectral lines	W m ⁻²	2	~10 ⁻²²
	Continuum	μJy		~1
Field of Rega	rd:			at least 40° band centered on ecliptic plane
Orbit: Technology	y		Sun-E	Carth L2
Descr	Description		TRL	
Spin-stabilized tethered formation flight FIR photon-counting detectors Cryo-thermal system w/ cryocoolers			allenge is to produce detectors with NEP < 10^{-20} W Hz ^{-1/2} th time constant ~35 µsec or faster; 50 x 50 pixel array	
Wide-field sp	batio-spectral interfer		5	
Concept m	aturity		pre-Pł	nase A ("Vision Mission" concept study by Harwit et al. 2005)

Image Resolution

Continuum Sensitivity

