Tales of Hierarchical Three-body

Systems

Gongjie Li

Harvard University \rightarrow Georgia Tech

Main Collaborators: Smadar Naoz (UCLA), Bence Kocsis (IAS/Eotvos)
Matt Holman (Harvard), Avi Loeb (Harvard)

HIERARCHICAL THREE-BODY SYSTEMS

- Configuration:

HIERARCHICAL THREE-BODY SYSTEMS

- Configuration:

$$
r_{I} \ll r_{2}
$$

- Hierarchical configurations are COMMON:
- For binaries with period <3 days, $\geq 96 \%$ are in systems with multiplicity ≥ 3. (Tokovinin et al. 2006)
- 282 of the 299 triple systems (-94.3%) are hierarchical. (Eggleton et al. 2007)
- Hierarchical 3-body dynamics gives insight for hierarchical multiple systems formation/evolution.

OUTLINE

- Dynamical properties:
- Flips of inner binary
- Eccentricity excitation of the inner binary
- Examples:
- Formation of misaligned hot Jupiters
- Enhancement of tidal disruption rates for stars in galactic nuclei

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM

System is stable and can be thought of as interaction between two orbital wires (secular approximation):

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM

System is stable and can be thought of as interaction between two orbital wires (secular approximation):

- Inner wires (I) : formed by m_{I} and m_{J}.

Outer wires (2): m_{2} orbits the center mass of m_{I} and m_{J}.

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM

System is stable and can be thought of as interaction between two orbital wires (secular approximation):

- Inner wires (I) : formed by m_{I} and m_{J}.

Outer wires (2): m_{2} orbits the center mass of m_{I} and m_{J}.
a_{1} / a_{2} small, expand H in a_{1} / a_{2} and apply perturbative analysis

LIDOV-KOZAI MECHANISM

Lidov-Kozai Mechanism

$$
\left(\mathrm{e}_{2}=\mathrm{o}, \mathrm{~m}_{\mathrm{J}} \rightarrow \mathrm{o}\right)
$$

(Kozai 1962; Lidov 1962:
Solar system objects)

- Octupole level $\mathrm{O}\left(\left(\mathrm{a}_{1} / a_{2}\right)^{3}\right)$ is zero.
- Quadrupole level O(($\left.\left.\mathrm{a}_{1} / a_{2}\right) 2\right)$:

$$
\begin{aligned}
\Rightarrow J z= & \sqrt{1-e_{1}^{2}} \cos i_{1} \text { conserved } \\
& \text { (axi-symmetric potential). }
\end{aligned}
$$

LIDOV-KOZAI MECHANISM

Lidov-Kozai Mechanism

$$
\left(\mathrm{e}_{2}=\mathrm{o}, \mathrm{~m}_{\mathrm{J}} \rightarrow \mathrm{o}\right)
$$

(Kozai 1962; Lidov 1962:
Solar system objects)

- Octupole level $\mathrm{O}\left(\left(\mathrm{a}_{\mathrm{I}} / \mathrm{a}_{2}\right)^{3}\right)$ is zero.
- Quadrupole level O(($\left.\left.\mathrm{a}_{1} / a_{2}\right) 2\right)$:

$$
\begin{aligned}
\Rightarrow J z= & \sqrt{1-e_{1}^{2}} \cos i_{1} \text { conserved } \\
& (\text { axi-symmetric potential). }
\end{aligned}
$$

$e \uparrow, i \downarrow$

LIDOV-KOZAI MECHANISM

Lidov-Kozai Mechanism

$$
\left(\mathrm{e}_{2}=\mathrm{o}, \mathrm{~m}_{\mathrm{J}} \rightarrow \mathrm{o}\right)
$$

(Kozai 1962; Lidov 1962:
Solar system objects)

- Octupole level $\mathrm{O}\left(\left(\mathrm{a}_{1} / a_{2}\right)^{3}\right)$ is zero.
- Quadrupole level $\mathrm{O}\left(\left(a_{1} / a_{2}\right) 2\right)$:

$$
\begin{aligned}
\Rightarrow J z= & \sqrt{1-e_{1}^{2}} \cos i_{1} \text { conserved } \\
& (\text { axi-symmetric potential). }
\end{aligned}
$$

LIDOV-KOZAI MECHANISM

Lidov-Kozai Mechanism

$$
\left(\mathrm{e}_{2}=\mathrm{o}, \mathrm{~m}_{\mathrm{J}} \rightarrow \mathrm{o}\right)
$$

(Kozai 1962; Lidov 1962:
Solar system objects)

- Octupole level $\mathrm{O}\left(\left(\mathrm{a}_{\mathrm{I}} / \mathrm{a}_{2}\right)^{3}\right)$ is zero.
- Quadrupole level O(($\left.\left.\mathrm{a}_{1} / a_{2}\right) 2\right)$:

$$
\begin{aligned}
\Rightarrow J z= & \sqrt{1-e_{1}^{2}} \cos i_{1} \text { conserved } \\
& (\text { axi-symmetric potential) } .
\end{aligned}
$$

$e \uparrow, i \downarrow$
i does not cross 90°

LIDOV-KOZAI MECHANISM

Lidov-Kozai Mechanism

$$
\left(\mathrm{e}_{2}=\mathrm{o}, \mathrm{~m}_{\mathrm{J}} \rightarrow \mathrm{o}\right)
$$

(Kozai 1962; Lidov 1962:
Solar system objects)

- Octupole level $\mathrm{O}\left(\left(\mathrm{a}_{1} / a_{2}\right)^{3}\right)$ is zero.

- Quadrupole level O(($\left.\left.\mathrm{a}_{1} / a_{2}\right) 2\right)$:

$$
\Rightarrow J z=\sqrt{1-e_{1}^{2}} \cos i_{1} \text { conserved }
$$

(axi-symmetric potential).
$\Rightarrow>$ when $\mathrm{i}>40^{\circ}, \mathrm{e}_{\mathrm{I}}$ and i oscillate with large amplitude.

Example of Lidov-Kozai Mechanism.

OCTUPOLE LIDOV-KOZAI MECHANISM

$e_{2} \neq 0$ (Eccentric Lidov-Kozai

Mechanism) or $\mathrm{m}_{\mathrm{J}} \neq \mathrm{o}$:
(e.g., Naoz et al. 201I, 2013, test particle case: Katz et al. 201I, Lithwick of Naoz 201I):

- Jz NOT constant, octupole $\neq 0$.

Cyan: quadrupole only.
Red: quadrupole + octupole. Naoz et al 2013

OCTUPOLE LIDOV-KOZAI MECHANISM

$e_{2} \neq 0$ (Eccentric Lidov-Kozai Mechanism) or $\mathrm{m}_{\mathrm{J}} \neq \mathrm{o}$:
(e.g., Naoz et al. 2011, 2013, test particle case:

Katz et al. 201I, Lithwick \& Naoz 201I):

- Consequence:
- Produces retrograde hot Jupiters ($i>90^{\circ}$) (e.g., Naoz et al. 20ir)

OCTUPOLE LIDOV-KOZAI MECHANISM

$e_{2} \neq 0$ (Eccentric Lidov-Kozai Mechanism) or $\mathrm{m}_{\mathrm{J}} \neq \mathrm{o}$:
(e.g., Naoz et al. 2011, 2013, test particle case:

Katz et al. 201I, Lithrick \&o Naoz 20II):

- Consequence:
- Tidal disruption rate enhancement ($e_{1} \rightarrow 1$)

(e.g., Chen et al. 2009, Bode \& Wegg 2014, Li et al. 2015)

$$
R_{p} \propto 1-e_{1}
$$

OCTUPOLE LIDOV-KOZAI MECHANISM

$e_{2} \neq 0$ (Eccentric Lidov-Kozai
Mechanism) or $\mathrm{m}_{\mathrm{J}} \neq \mathrm{o}$:
(e.g., Naoz et al. 201I, 2013, test particle case:

Katz et al. 201I, Lithwick \& Naoz 201I):

- Consequence:
- Produces retrograde hot Jupiters (i>90 ${ }^{\circ}$ (e.g., Naoz et al. 20iI)
- Tidal disruption rate enhancement ($e_{1} \rightarrow 1$) (e.g., Chen et al. 2009, Bode \& Wegg 2014, Li et al. 2015)

Cyan: quadrupole only.
Red: quadrupole + octupole. Naoz et al 2013

$$
40^{\circ}<i<140^{\circ}
$$

COPLANAR FLIP

- Starting with $i \approx 0$, $e_{1} \geq 0.6, e_{2} \neq \mathrm{O}$:
$e_{1} \rightarrow \mathrm{I}, i$ flips by $\approx 18 \mathrm{o}^{\circ}$
(Lietal. 2014a).

(Li et al. 20I4a)

COPLANAR FLIP

- Starting with $i \approx 0$, $e_{1} \geq 0.6, e_{2} \neq 0$:
$e_{1} \rightarrow \mathrm{I}, i$ flips by $\approx 180^{\circ}$
(Liet al. 2014a).

COPLANAR FLIP

- Starting with $i \approx 0$, $e_{1} \geq 0.6, e_{2} \neq \mathrm{O}$:
$e_{1} \rightarrow \mathrm{I}, i$ flips by $\approx 18 \mathrm{o}^{\circ}$
(Liet al. 2014a).

(Li et al. 20I4a)

COPLANAR FLIP

- Starting with $i \approx 0$,
$e_{1} \geq 0.6, e_{2} \neq \mathrm{O}$:
$e_{1} \rightarrow \mathrm{I}, i$ flips by $\approx 18 \mathrm{o}^{\circ}$
(Liet al. 2014a).

=> Increase the parameter space of interesting behaviors.
=> Produces counter orbiting hot Jupiters.
=> Enhance tidal disruption rates.

DIFFERENCES BETWEEN HIIGH/LOW I FLIP

- Low inclination flip

- For simplicity: take $\mathrm{m}_{\mathrm{j}} \rightarrow \mathrm{O}=>$ outer orbit stationary.
- z direction: angular momentum of the outer orbit.
- \uparrow : direction of J_{r}.
- $\uparrow: \mathrm{Jz}_{\mathrm{I}}=>$ indicates flip.
- Colored ring: inner orbit. Color: mean anomaly.

DIFFERENCES BETWEEN HIIGH/LOW I FLIP

- High inclination flip

- For simplicity: take $\mathrm{m}_{\mathrm{j}} \rightarrow \mathrm{O}=>$ outer orbit stationary.
- z direction: angular momentum of the outer orbit.
- \uparrow : direction of J_{r}.
- $\uparrow: \mathrm{Jz}_{\mathrm{I}}=>$ indicates flip.
- Colored ring: inner orbit. Color: mean anomaly.

ANALYTICAL OVERVIEW

- Hamiltonian has two degrees of freedom in test particle limit:

$$
\begin{aligned}
& \left(J=\sqrt{1-e_{1}^{2}}, J z=\sqrt{1-e_{1}^{2}} \cos i_{1}, \omega, \Omega\right) \\
& 2 \text { conjugate pairs: } \mathrm{J} \& \omega, \mathrm{~J} z \& \Omega
\end{aligned}
$$

- The Hamiltonian up to the Octupole order:

$$
H=F_{\text {quad }}(J, J z, \omega)+\epsilon F_{\text {oct }}(J, J z, \omega, \Omega)
$$

Quadrupole order: Independent of Ω
=> Jz constant
ϵ : hierarchical parameter:
$\epsilon=\frac{a_{1}}{a_{2}} \frac{e_{2}}{1-e_{2}^{2}}$

Octupole order: Depend on both $\Omega \& \omega=>\mathrm{J}$ and Jz not constant

CO-PLANAR FLIP CRITERION

- Hamiltonian (at $\mathrm{O}(i))$:
- Evolution of e_{l} only due to octupole terms:
$=>e_{1}$ does not oscillate before flip
- Depend on only J_{I} and $\varpi_{I}=\omega_{\mathrm{I}}+\Omega_{\mathrm{I}}$

> => System is integrable.
$=>e_{I}(\mathrm{t})$ can be solved.
=> The flip timescale can be derived.
=> The flip criterion can be derived.

$$
\varepsilon>\frac{8}{5} \frac{1-e_{1}^{2}}{7-e_{1}\left(4+3 e_{1}^{2}\right) \cos \left(\omega_{1}+\Omega_{1}\right)}
$$

CO-PLANAR FLIP CRITERION

- Hamiltonian (at $\mathrm{O}(i))$:
- Evolution of e_{l} only due to octupole terms:
$=>e_{l}$ does not oscillate before flip
- Depend on only J_{I} and $\varpi_{\mathrm{I}}=\omega_{\mathrm{I}}+\Omega_{\mathrm{I}}$
=> System is integrable.
$\Rightarrow e_{l}(\mathrm{t})$ can be solved.
=> The flip timescale can be derived.
=> The flip criterion can be derived.
Easier to flip:
* e_{1} larger
* $\bar{\varpi}_{1}=\omega_{1}+\Omega_{1} \sim 180^{\circ}$

ANALYTICAL RESULTS V.S. NUMERICAL RESULTS

- The flip criterion and the flip timescale from secular integration are consistent with the analytical results.

SURFACE OF SECTIONS

Coplanar Flip:

(Gongjie Li et al. 2014b)

High inclination Flip:

Quadrupole resonances
(e.g., Kozai 1962)

Caused by the octupole resonance, Regular (ϖ librates around π)

Caused by the overlap of quadrupole and octupole resonances, Chaotic: $\mathrm{t}_{\mathrm{L}}-6 \mathrm{t}_{\mathrm{K}}$

Examples --- I. Formation of Misaligned Hot Jupiters via Lidov-Kozai Oscillations

Credit: ESA/C. Carreau

Mass - Period Distribution

Mass - Period Distribution

SPIN-ORBIT MISALIGNMENT (ROSSITER-MCLAUGHLIN METHOD)

Stellar Spin

OBSERVED SPIN-ORBIT MISALIGNMENT

Solar System: misalignment $\Psi \leqslant 70$

OBSERVED SPIN-ORBIT MISALIGNMENT

Solar System: misalignment $\Psi \leq 7^{\circ}$

FORMATION OF COUNTER ORBITING HOT

 JUPITERS (LK + TIDE)
Coplanar Flip

FORMATION OF COUNTER ORBITING HOT JUPITERS (LK + TIDE)

$e_{I} \rightarrow 1$ during the flip
$\Rightarrow \mathrm{r}_{\mathrm{p}} \downarrow$, tide dominates. $\quad \Rightarrow e_{I} \rightarrow \mathrm{O}, a_{I} \downarrow, i, \psi \approx 180^{\circ}$.

FORMATION OF COUNTER ORBITING HOT JUPITERS (LKK + TIDE)

May produce tidal disruption events

DIFFICULTY \mathbb{N} THE FORMATION OF COUNTERORBITING HOT JUPITERS

Including short range forces, a small fraction survive and produce retrograde planets

Xue \& Suto 2016, Xue et al. 2017

DIFFICULTY \mathbb{N} THE FORMATION OF COUNTERORBITING HOT JUPITERS

Flip condition (with no short range forces) is also a good approximation for migration condition

Xue \& Suto 2016, Xue et al. 2017

FORMATION OF MISALIGNED HOT JUPITERS

 (LK + TIIDE) BY POPULATION SYNTHESIS

- 15% of systems produce hot Jupiters
- ELK may account for about 30% of hot Jupiters (Naoz et al. 20II)

FORMATION OF MISALIGNED HOT JUPITERS (LK + TIDE) BY POPULATION SYNTHESIS

Population synthesis study of interaction of two giant planets.
=> a different
mechanism is needed
(Petrovich 2015)

FORMATION OF MISALIGNED HOT JUPITERS (LK + TIDE) BY POPULATION SYNTHESIS

Population synthesis study of interaction of two giant planets.
=> a different mechanism is needed (Petrovich 2015)

LK produces $\sim 20 \%$ of the observed HJs

FORMATION OF HOT JUPITERS OBSERVATIONAL EVIDENCES

16 Cygni Bb: e $=0.67$

FORMATION OF HOT JUPITERS

16 Cygni $\mathrm{Bb}: \mathrm{e}=0.67$, can be produced by Lidov-Kozai mechanism

Holman et al. 1997

FORMATION OF HOT JUPITERS

Each grid square $=0.1 \mathrm{AU} \times 0.1 \mathrm{AU}$
Planet and star not drawn to scale
Naef et al. 2001

FORMATION OF HOT JUPITERS

Pont et al. 2009

Each grid square $=0.1 \mathrm{AU} \times 0.1 \mathrm{AU}$
Planet and star not drawn to scale
Naef et al. 2001

FORMATION OF HOT JUPITERS

Pont et al. 2009

HD80606b: $\mathrm{e}=0.93$, can be produced by Lidov-Kozai mechanism

Wu \& Murray 2003
Each grid square $=0.1 \mathrm{AU} \times 0.1 \mathrm{AU}$
Planet and star not drawn to scale
Naef et al. 2001

FRIENDS OF HOT JUPITERS

Existence an outer companion?

or

LK not dominate
Knutson et al. 2014

FRIENDS OF HOT JUPITERS

$47 \% \pm 7 \%$ of hot Jupiter have stellar companions with a b.t. 50-200o AU based on 77 transiting hot Jupiters

Ngo et al. 2016

$<16 \% \pm 5 \%$ systems formed via Lidov-Kozai oscillations

FRIENDS OF HOT JUPITERS

No correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions based on 27 misaligned/eccentric HJs

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

- SMBHBs originate from mergers between galaxies.

- SMBHBs with mostly -kpc separation have been observed with direct imagine.
(e.g., Woo et al. 2014; Komossa et al. 2013, Fabbiano et al. 201ı, Green et al. 2010, Civano et al. 20io, Rodriguez et al. 2006, Komossa et al. 2003, Hutchings \& Neff 1989)

Multicolor image of NGC 6240. Red p
 5 keV), and blue p hard ($5-8 \mathrm{keV}$) X-ray band. (Komossa et al. 2003)

STARS SURROUNDING SMBHB

- At -Ipc separation it is more difficult to identify SMBHBs. SMBHBs can be observed with photometric and spectral features.
(e.g., Shen et al. 2013, Boroson \& Lauer 2009, Valtonen et al. 2008, Loeb 2007)

Example of multi-epoch spectroscopy (Shen et al. 2013):

STARS SURROUNDING SMBHB

- At -Ipc separation it is more difficult to identify SMBHBs. SMBHBs can be observed with photometric and spectral features.
(e.g., Shen et al. 2013, Boroson \& Lauer 2009, Valtonen et al. 2008, Loeb 2007)
- Identify SMBHB at -I pe separation by stellar features due to $^{\text {p }}$ interactions with SMBHB.
(e.g., Chen et al. 2009, 20II, Wegg \& Bode 201ı, Li et al. 2015)

PERTURBATIONS ON STARS SURROUNDING SMBHB

- Identify SMBHB at -I pc separation by stellar features due to interactions with SMBHB.
(e.g., Chen et al. 2009, 2011, Wegg \& Bode 201r, Li et al. 2015)

RATES

e_{I} max determines the closest distance:
$\mathrm{r}_{\mathrm{p}} \propto\left(\mathrm{I}-\mathrm{e}_{\mathrm{I}}\right)$
$t_{K}=\frac{8}{3} P_{i n} \frac{m_{1}}{m_{2}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-e_{2}^{2}\right)^{3 / 2}$
$e_{\text {max }}$ reaches $\mathrm{I}^{-1 \mathrm{IO}^{-6}}$ over $-30 \mathrm{t}_{\mathrm{K}}$ (-Myrs)

Starting at $a-\mathrm{IO}^{6} \mathrm{R}_{\mathrm{t}}$, it's still possible to be disrupted in $\sim 30 \mathrm{t}_{\mathrm{K}}$!

SUPPRESSION OF ELK

- Eccentricity excitation suppressed when precession timescale < Kozai timescale.

$$
\mathrm{m}_{\circ}=107 \mathrm{M}_{\odot}, \mathrm{m}_{2}=109 \mathrm{M}_{\odot}, \mathrm{e}_{\mathrm{I}}=2 / 3, \mathrm{a}_{2}=0.3 \mathrm{pc}, \mathrm{~m}_{\mathrm{I}}=\mathrm{I} \mathrm{M}_{\odot}, \mathrm{e}_{2}=0.7
$$

SUPPRESSION OF ELK

- Eccentricity excitation suppressed when precession timescale < Kozai timescale. $\mathrm{m}_{0}=107 \mathrm{M}_{\odot}, \mathrm{m}_{2}=10{ }^{9} \mathrm{M} \odot$

$e_{1}=2 / 3, a_{2}=0.3 \mathrm{pc}, \mathrm{m}_{\mathrm{I}}=\mathrm{I} \mathrm{M}_{\odot}, e_{2}=0.7$.
(Liet al. 2015)

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

- Eccentricity excitation suppressed when precession timescale $<$ Kozai timescale.

- Kozai affects more stars when perturbing more massive SMBH.

SUPPRESSION OF ELK

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

- 57/1000 disrupted; 726/1000 scattered.

- Example: $m_{1}=10^{7} \mathrm{M}_{\odot}, m_{2}=10^{8} \mathrm{M} \odot, a_{2}$ $=0.5 \mathrm{pc}, e_{2}=0.5$, Run time: 1 Gyr .

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

- 57/1000 disrupted; 726/1000 scattered.

=> Disruption rate can reach $\sim 10^{-3} / \mathrm{yr}$.
- Example: $m_{1}=10^{7} \mathrm{M}_{\circ}, m_{2}=10^{8} \mathrm{M}_{\circ}, a_{2}$ $=0.5 \mathrm{pc}, e_{2}=0.5$, Run time: 1 Gyr .

EFFECTS ON STARS SURROUNDING $A \mathbb{N} \mathbb{N} M B H I \mathbb{N}$ GC

- Example: $m_{1}=10^{4} \mathrm{M}_{\bullet}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7$ (Run time: 100 Myr)

EFFECTS ON STARS SURROUNDING AN IMBH IN GC

- Example: $m_{1}=10^{4} \mathrm{M}_{\bullet}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7$ (Run time: 100 Myr)

- 40/1000 disrupted; 500/1000 $=>\sim 50 \%$ stars survived. scattered.
$=>$ Disruption rate can reach $\sim 10^{-4} / \mathrm{yr}$.

EFFECTS ON STARS SURROUNDING AN IMBH IN GC

- Example: $m_{l}=10^{4} \mathrm{M}_{\odot}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7, \alpha=1.75$ (Run time: 100 Myr)

CONCLUSION

- Perturbation of the outer object can produce flips of the inner orbit and excite inner orbit eccentricity

O Under tidal dissipation, the perturbation of a farther companion can produce misaligned hot Jupiters

O Perturbation of a SMBH may enhance the tidal disruption rate of stars.

THANK YOU!

Systematic Study of the Parameter Space

- Identify the resonances and the chaotic region.
- Characterize the parameter space that give rise to the interesting behaviors --- eccentricity excitation and orbital flips.

EFFECTS ON STARS SURROUNDING $A \mathbb{N} \mathbb{N} M B H I \mathbb{N}$ GC

- Example: $m_{1}=10^{4} \mathrm{M}_{\bullet}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7$ (Run time: 100 Myr)

EFFECTS ON STARS SURROUNDING AN IMBH IN GC

- Example: $m_{1}=10^{4} \mathrm{M}_{\bullet}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7$ (Run time: 100 Myr)

- 40/1000 disrupted; 500/1000 $=>\sim 50 \%$ stars survived. scattered.
$=>$ Disruption rate can reach $\sim 10^{-4} / \mathrm{yr}$.

EFFECTS OF EKM ON STARS SURROUNDING BBH

- Example: $m_{l}=10^{7} \mathrm{M}_{\odot}, m_{2}=10^{8} \mathrm{M}_{\odot}, a_{2}=0.5 \mathrm{pc}, e_{2}=0.5, \alpha=1.75$.

Run time: 1 Gyr .

EFFECTS ON STARS SURROUNDING AN IMBH IN GC

- Example: $m_{l}=10^{4} \mathrm{M}_{\odot}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7, \alpha=1.75$ (Run time: 100 Myr)

SUPPRESSION OF ELK

ROSSITER-MCLAUGHLIN METHOD (SPIN-ORBITT MISALIGNMENT)

ROSSITER-MCLAUGHLIN METHOD (SPIN-ORBITT MISALIGNMENT)

DIFFERENCES BETWEEN HIGH/LOW I FLIP

Low inclination flip

High inclination flip

Low inclination flips:
$e_{\mathrm{I}} \uparrow$ monotonically, inclination stays low before flip.
Flip occurs faster.

Resonances and Chaotic Regions

- The Hamiltonian $\mathrm{H}_{\text {res }}$ takes form of a pendulum.
- Two dynamical regions: libration region and circulation region.

Resonances and Chaotic Regions

- The Hamiltonian $\mathrm{H}_{\text {res }}$ takes form of a pendulum.
- Two dynamical regions: libration region and circulation region, separated by separatrix.

Resonances and Chaotic Regions

- The Hamiltonian $\mathrm{H}_{\text {res }}$ takes form of a pendulum.
- Two dynamical regions: libration region and circulation region, separated by separatrix.

Overlap of resonances can cause chaos

Separatrix
Circulation

Surface of Section

Example of a 2-degree freedom $\mathrm{H}(\mathrm{J}, \omega, \mathrm{Jz}, \Omega)$

(Li et al. 20I4b)

- Resonant zones: points fill I -D lines. trajectories are quasi-periodic.
- Chaotic zones: points fill a higher dimension.

Surface of Section

- Surface of section of hierarchical three-body problem in the test particle limit in the $J-\omega$ Plane.
- $J=\sqrt{1-e_{1}^{2}}$ (specific angular momentum);
ω : argument of periapsis

Li et al. 20I4b

Surface of Section

Resonances exist for all surfaces:
Low i
High i ($40-60^{\circ}$)

Quadrupole order dominates

Octupole order stronger

Quadrupole resonances:
centers at low $\mathrm{e}_{\mathrm{I}}, \omega=\pi / 2$ and $3 \pi / 2$ (e.g. Kozai 1962)
Octupole resonances:
centers at high $e_{1}, \omega=\pi$ or $\pi / 2$ and $3 \pi / 2$

Surface of Section

High i ($40^{-60^{\circ}}$)

- e_{1} excitation $(J \rightarrow 0)$ are caused by octupole resonances.
- Near coplanar flip due to octupole resonances alone.
- High inclination flip due to both quadrupole and octupole order resonances.

Summary

- Hierarchical Three Body Dynamics:
- Starting with near coplanar configuration, the inner orbit of a hierarchical $3^{-b o d y}$ system can flip by $\sim 180^{\circ}$, and $\mathrm{e}_{\mathrm{I}} \rightarrow \mathrm{I}$.
- This mechanism is regular, and the flip criterion and timescale can be expressed analytically.
- This mechanism can produce counter orbiting hot exoplanets, and can enhance collision/tidal disruption rate.
- Underlying resonances:
- Flips and e_{1} excitations are caused by octupole resonances.
- High inclination flips are chaotic, with Lyapunov timescale - $6 \mathrm{t}_{\mathrm{K}}$.

Summary

- Coplanar flip:
- Starting with near coplanar configuration, the inner orbit of a hierarchical $3^{-b o d y}$ system can flip by $\sim 180^{\circ}$, and $\mathrm{e}_{\mathrm{I}} \rightarrow \mathrm{I}$.
- This mechanism is regular, and the flip criterion and timescale can be expressed analytically.
- This mechanism can produce counter orbiting hot exoplanets, and can enhance collision/tidal disruption rate.
- Characterization of parameter space:
- Near coplanar flip and e_{1} excitations are caused by octupole resonances.
- High inclination flips are chaotic, with Lyapunov timescale $-6 t_{\text {K }}$.

Potential Applications

- Captured stars in BBH systems may affect stellar distribution around the BHs (e.g., Ann-Marie Madigan, Smadar Naoz, Ryan O'Leary).
- Tidal disruption and collision events for planetary systems (e.g., Eugene Chiang, Bekki Dawson, Smadar Naoz).
- Production of supernova (e.g., Rodrigo Fernandez, Boaz Katz, Todd Thompson).
- Other aspects:
- Involving more bodies (e.g., Smadar Naoz, Todd Thompson).
- Obliquity variation of planets.

COHJ Contradict with popular Planets' Formation Theory

- Formation Theory:

- Planet systems form from cloud contraction.
- Spin of the star ends up aligned with the orbit of the planets

Analytical Overview --- Test Particle Limit

- Hamiltonian has two degrees of freedom:
isolated 3-body: 6 dof $\xrightarrow{\text { secular }} 4$ dof $\xrightarrow{\text { test-particle }} 2$ dof
2 conjugate pairs: J \& $\omega, \mathrm{Jz} \& \Omega$

$$
\left(J=\sqrt{1-e_{1}^{2}}, J z=\sqrt{1-e_{1}^{2}} \cos i_{1}\right)
$$

Pericenter
ω : orientation in orbital plane.
Ω : orientation in reference plane.

Analytical Overview

- Hamiltonian (Harrington 1968, 1969; Ford et al., 2000):
- In the octupole order: $\mathrm{H}=-\mathrm{F}_{\text {quad }}-\varepsilon \mathrm{F}_{\text {oct }}, \varepsilon=\left(\mathrm{a}_{\mathrm{I}} / \mathrm{a}_{2}\right) \mathrm{e}_{2} /\left(\mathrm{I}-\mathrm{e}_{2}{ }^{2}\right)$

$$
\begin{aligned}
F_{\text {quad }} & =-\left(e_{1}^{2} / 2\right)+\theta^{2}+3 / 2 e_{1}^{2} \theta^{2} \\
& +5 / 2 e_{1}^{2}\left(1-\theta^{2}\right) \cos \left(2 \omega_{1}\right), \\
F_{\text {oct }} & =\frac{5}{16}\left(e_{1}+\left(3 e_{1}^{3}\right) / 4\right) \\
& \times\left(\left(1-11 \theta-5 \theta^{2}+15 \theta^{3}\right) \cos \left(\omega_{1}-\Omega_{1}\right)\right. \\
& \left.+\left(1+11 \theta-5 \theta^{2}-15 \theta^{3}\right) \cos \left(\omega_{1}+\Omega_{1}\right)\right) \\
& -\frac{175}{64} e_{1}^{3}\left((1 - \theta - \theta ^ { 2 } + \theta ^ { 3 }) \operatorname { c o s } \left(3 \omega_{1}-\Omega_{1}\right.\right. \\
& \left.+\left(1+\theta-\theta^{2}-\theta^{3}\right) \cos \left(3 \omega_{1}+\Omega_{1}\right)\right),
\end{aligned}
$$

- Independent of $\Omega_{\mathrm{t}}, \mathrm{J}_{\mathrm{z}}$ const.
- Depend on both ω_{I} and Ω_{I} \rightarrow both J and J_{z} are not const.

$$
t_{K}=\frac{8}{3} P_{i n} \frac{m_{1}}{m_{2}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-e_{2}^{2}\right)^{3 / 2}
$$

Analytical Derivation for Flip Criterion and Timescale

- Hamiltonian (at O(i)):
- Evolution of e_{r} only due to octupole terms:
$\Rightarrow e_{I}$ does not oscillate before flip.
- Depend on only J_{I} and $\varpi_{\mathrm{I}}=\omega_{\mathrm{I}}+\Omega_{\mathrm{I}}$
=> System is integrable.
$\Rightarrow e_{I}(t)$ can be solved.
- Flip at $\mathrm{e}_{\mathrm{I}, \max }-\mathrm{I}$
\Rightarrow The flip timescale can be derived.
- Flip when $\varpi_{\mathrm{r}}=180^{\circ}$
=> The flip criterion can be derived.

$$
\varepsilon>\frac{8}{5} \frac{1-e_{1}^{2}}{7-e_{1}\left(4+3 e_{1}^{2}\right) \cos \left(\omega_{1}+\Omega_{1}\right)}
$$

Analytical Overview

- Hamiltonian has two degrees of freedom:

$$
\left(J=\sqrt{1-e_{1}^{2}}, J z=\sqrt{1-e_{1}^{2}} \cos i_{1}, \omega, \Omega\right)
$$

2 conjugate pairs: J \& $\omega, J z \& \Omega$

- Hamiltonian (Harrington 1968, 1969; Ford et al. 2000): In the octupole order:

Interaction Energy (H) of two orbital wires:

$$
H=F_{q u a d}(J, J z, \omega)+\epsilon F_{o c t}(J, J z, \omega, \Omega)
$$

Quadrupole order: Independent of Ω
$\Rightarrow J z$ constant
ϵ : hierarchical parameter:
$\epsilon=\frac{a_{1}}{a_{2}} \frac{e_{2}}{1-e_{2}^{2}}$

Octupole order: Depend on both $\Omega \& \omega=>\mathrm{J}$ and Jz not constant

Analytical Der ar

- Hamiltonian (at $O(i))$ depend on only e_{1} and $\varpi_{1}=\omega_{1}+\Omega_{1}$:
- Evolution of e_{r} only due to octupole terms:

$$
\dot{e}_{1}=\frac{5}{8} J_{1}\left(3 J_{1}^{2}-7\right) \varepsilon \sin \left(\varpi_{1}\right) \quad \dot{\varpi}_{1}=J_{1}\left(2+\frac{5\left(9 J_{1}^{2}-13\right) \varepsilon \cos \left(\varpi_{1}\right)}{\sqrt{1-J_{1}^{2}}}\right)
$$

- $\mathrm{e}_{\mathrm{I}}(\mathrm{t})$ can be solved $=>$

The flip criterion and the flip timescale can be derived:

$$
\varepsilon>\frac{8}{5} \frac{1-e_{1}^{2}}{7-e_{1}\left(4+3 e_{1}^{2}\right) \cos \left(\omega_{1}+\Omega_{1}\right)}
$$

FLIIP CRITERION

- Averaging the quadrupole oscillations in limit $j_{z} \sim 0$, Katz et al. 2011 obtain the constant:

$$
f\left(C_{K L}\right)+\epsilon \frac{\cos i_{\text {tot }} \sin \Omega_{1} \sin \omega_{1}-\cos \omega_{1} \cos \Omega_{1}}{\sqrt{1-\sin ^{2}{ }_{1 \text { tot }} \sin ^{2} \omega_{1}}}
$$

Requiring $j_{z}=0$, during the flip:

Analytical Results v.s. Numerical Results

Why do analytical results with low inclination approximation work?

$I C: m_{I}={ }_{I} M_{\odot}, m_{2}=0 . I M_{\odot}, a_{I}=I A U, a_{2}=$ $45.7 A U, \omega_{I}=0^{\circ}, \Omega_{I}=180^{\circ}, i_{I}=5^{\circ}$.

Analytical Results v.s. Numerical Results

Why do analytical results with low inclination approximation work?

Small inclination assumption holds for most of the evolution.

Li, et al., 2013

Examples --- I. Produce Counter Orbiting Hot Jupiters (+ tide)

Question:

Does this
mechanism produce a peak at $\psi \approx 180^{\circ}$?

No.

Examples --- ı. Produce Counter

 Orbiting Hot Jupiters (+ tide)Question:
Will planet be tidally disrupted?

Li et al., 20I4a

Applications --- r. Produce Counter Orbiting Hot Jupiters (+ tide)

- Hot Jupiters:
- massive exoplanets ($m \geq m_{J}$) with close-in orbits (period: I^{-4} day).
- Counter Orbiting Hot Jupiters:
- Hot Jupiters that orbit in exactly the opposite direction to the spin of their host star.
- Disagree with the classical planet formation theory: the orbit aligns with the stellar spin.

Rossiter-McLaughlin Method

http://www.subarutelescope.org/

FORMATION OF MISALIGNED HOT JUPITERS

(LK + STELLAR OBLATENESS + TIDE)

Anderson et al. 2016:
$\mathrm{Mp}<3 \mathrm{M}_{\mathrm{J}}$ => bimodal
$\mathrm{Mp} \sim 5 \mathrm{M}_{\mathrm{J}}$
=> low misalignment (solar-type stars)
=> higher misalignment (more massive
 stars)

FORMATION OF MISALIGNED HOT JUPITERS (LK + STELLAR OBLATENESS + TIDE)

If the host star is spinning and oblate, gravity from the planet makes stellar spin precess around L , and can cause chaos under Lidov-Kozai oscillations (Storch \& Lai 2015).

Storch \& Lai 2015
Chaos: precession period \sim Lidov-Kozai oscillation period

Take Home Message

- Eccentric Coplanar Kozai Mechanism can flip an eccentric coplanar inner orbit to produce counter orbiting exoplanets

Eccentric inner orbit flips due to eccentric coplanar outer companion

Observational Links to Counter Orbiting Hot Jupiters

- Distribution of sky projected spin-orbit angle (λ) of Hot Jupiters

There are retrograde hot jupiters $\left(\lambda>90^{\circ}\right)$

It is possible to have counter orbiting planets.

Applications --- 2. Effects of EKM of Stars Surrounding BBH

- Tidal disruption rate is highly uncertain:
- It is observed to be $10-5-4 / \mathrm{galaxy} / \mathrm{yr}$ from a very small sample by Gezari et al. 2008.
- It roughly agrees with theoretical estimates. (e.g. Wang \& Merritt 2004)
- The disruption rate may be greatly enhanced:
- due to non-axial symmetric stellar potential. (Merritt \& Poon 2004)
- due to SMBHB (Ivanov et al. 2005, Wegg \& Bode 201r, Chen et al. 20II)
- due to recoiled SMBHB (Stone \& Loeb 201I)

Examples --- 3. Effects of EKM of Stars Surrounding BBH

- Example: $m_{1}=10^{7} \mathrm{M} \odot, m_{2}=10^{8} \mathrm{M} \odot, a_{2}=0.5 \mathrm{pc}, e_{2}=0.5, \alpha=1.75$ (stellar distribution), normalized by $\mathrm{M}-\sigma$ relation. Run time: 1 Gyr .

(Li, et al.

Examples --- 3. Effects of EKM of Stars Surrounding BBH

- Example: $m_{1}=10^{4} \mathrm{M} \odot, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7, \alpha=1.75$ (stellar distribution), normalized by M- σ relation. Run time: 100Myr.

(Li, et al.

COMPARISON OF TIMESCALES

STARS SURROUNDING SMBHB

- At -Ipc separation it is more difficult to identify SMBHBs. SMBHBs can be observed with spectral features.
(e.g., Shen et al. 2013, Boroson \& Lauer 2009, Valtonen et al. 2008, Loeb 2007)

Example of multi-epoch spectroscopy (Shen et al. 2013):

active BH dominates the BL features, multi-epoch BL features => binary orbital parameters

COPLANAR HIGH ECCENTRICITY MIGRATION

Population synthesis study. $\mathrm{tv}=\mathrm{O} . \mathrm{ryr}$

Initial v.s. Final Distribution

- Example: $m_{1}=10^{6} \mathrm{M}_{\bullet}, m_{2}=10^{10} \mathrm{M}_{\bullet}, a_{2}=1 \mathrm{pc}, e_{2}=0.7, \alpha=1.75$ (stellar distribution), normalized by M- σ relation. Run time: 1 Gyr .

Initial Condition in i

Maximum e_{I} for different H

and ϵ

Maximum e_{1} for low i, high e_{1} case, and high i cases

Surface of Section

- Trajectories chaotic only for $\mathrm{H}=-0.5,-0.1$ at high ϵ.
- High inclination flips are chaotic.
- Overall evolution of the trajectories: evolution sensitive on the initial angles.

Surface of Section

- Surface of section in the $\mathrm{Jz}-\Omega$ plane
$J z=\sqrt{1-e_{1}^{2}} \cos i_{1} \Omega$: longitude of node
Low i, high e_{1}
High i , low e_{I}

Quadrupol e order dominates

Octupole order dominates

- All features are due to octupole effects.
- Trajectories are chaotic only possible when $\mathrm{H}=-0.5,-0.3,-0.1$, for high ϵ.

Characterization of Chaos

- Lyapunov exponents $(\lambda): \lambda \uparrow$, more chaotic.

- Chaotic when $\mathrm{H} \leq \mathrm{o}$ (correspond to high i cases).
- In chaotic region, Lyapunov timescale $\mathrm{t}_{\mathrm{L}}=(\mathrm{I} / \lambda) \approx 6 \mathrm{t}_{\mathrm{K}}$. (t_{K} corresponds to the oscillation timescale of e_{r} and i)

$$
t_{K}=\frac{8}{3} P_{\text {in }} \frac{m_{1}}{m_{2}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-e_{2}^{2}\right)^{3 / 2}
$$

Surface of Section

Low i, high e_{I}
High i, low e_{I}
Quadrupol e order dominates

Octupole order dominates

- All features are due to octupole effects.
- Trajectories are chaotic only when $\mathrm{H} \leq 0$.
- Flips are due to octupole resonances.
(Li, et al., 2014 in prep)

Applications --- 2. Tidal Disruption of Stars Surrounding BBH

- SMBHBs originate from mergers between galaxies. Following the merger, the distance of the SMBHB decreases.
(Complete numerical simulations: e.g. Khan et al. 2012)
- SMBHBs with -kpc separation have been observed with direct imagine.
(e.g. Fabbiano et al. 201ı, Green et al. 2010, Civano et al. 20ır, Komossa et al. 2003, Hutchings \& Neff 1989)
- At - Ipc separation it is more difficult to identify SMBHBs. SMBHBs have been observed with optical spectra, light variability and radio lines.
(e.g. Boroson \& Lauer 2009, Valtonen et al. 2008, Rodriguez et al. 2006)
- Motivation of tidal disruption of stars by - Ipc SMBHB:

Identify SMBHB at -I pe separation with tidal disruption rate

Effects on Stars Surrounding BBH

- Dynamics of stars around BH or BBH:
- Secular dynamics introduce instability in eccentric stellar disks around a single BH (e.g. Madigan, Levin \& Hopman 2009)
- Tidal disruption event rate can be enhanced due to BBH and the recoil of BBH (Ivanov et al. 2005, Wegg to Bode 201I, Chen et al. 20II, Stone o Loeb 201I)
- Relic stellar clusters of recoiled BH may uncover MW formation history (e.g. O'Leary \& Loeb 2009).
- Here we study the effect of EKM to stars surrounding BBH

Effects of EKM on Stars Surrounding BBH

- Study the role of eccentric $\left(\mathbf{e}_{2} \neq 0\right)$ Kozai mechanism in the presence of general relativistic (GR) precession and Newtonian (NT) precession for stars surrounding SMBHB.
- Set the separation of the BBH at $a_{2}=1 p c, e_{2}=0.7$ and assuming $\varrho * \propto a^{-1.75}$, normalized by $\mathrm{M}-\sigma$ relation.
- $\mathrm{N} *$ is the number of stars affected by the eccentric Kozai Mechanism. (Requirement: $\mathrm{t}_{\mathrm{GR}}<\mathrm{t}_{\text {Kozai }}$, $\left.\mathrm{t}_{\mathrm{NT}}<\mathrm{t}_{\text {Kozai }}, \varepsilon<0.1, a_{1}<\mathrm{r}_{\mathrm{RL}}\right)$.

Effects of EKM on Stars Surrounding BBH

- Example: $m_{l}=10^{6} \mathrm{M}_{\circ}, m_{2}$
$=10^{10} \mathrm{M}_{\circ}, a_{2}=1 \mathrm{pc}, e_{2}=0.7$, Run time: 1 Gyr.
- 14/1000 disrupted; 535/1000 captured. Disruption/capture timescales are short.
\Rightarrow Captured stars may change stellar density profile of the other BH
=> With rapid diffusion, disruption rate $\sim 10^{-3} / \mathrm{yr}$.

(Li, et al., in prep)

SURFACE OF SECTION

- Resonant zones: points fill $\mathrm{I}^{-} \mathrm{D}$ lines. trajectories are quasi-periodic.
- Chaotic zones: points fill a higher dimension. trajectories are chaotic.

SURFACE OF SECTION

Quadrupole order dominates Octupole order stronger

resonances resonances
Quadrupole resonances:

centers at low $\mathrm{e}_{\mathrm{I}}, \omega=\pi / 2$ and $3 \pi / 2$ (e.g., Kozai 1962)
Octupole resonances:
centers at high $\mathrm{e}_{\mathrm{I}}, \omega=\pi$ or $\pi / 2$ and $3 \pi / 2$

SURFACE OF SECTION

Quadrupole order dominates

Octupole order stronger

chaos
quadru1 resonances

Octupole resonances: responsible for $\mathrm{e} \rightarrow \mathrm{I}$
Chaos: overlap of quadrupole and octupole resonances high inclination flips

CHARACTERIZATION OF CHAOS

OChaotic when $\mathrm{H} \leq \mathrm{O}$ (correspond to high i cases).

- In chaotic region, Lyapunov timescale $\mathrm{t}_{\mathrm{L}}=(\mathrm{I} / \lambda) \approx 6 \mathrm{t}_{\mathrm{K}}$.
(t_{K} corresponds to the oscillation timescale of e_{I} and i)

$$
t_{K}=\frac{8}{3} P_{i n} \frac{m_{1}}{m_{2}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-e_{2}^{2}\right)^{3 / 2}
$$

DIFFERENCES BETWEEN HIGH/LOW I FLIP

Low inclination flip

High inclination flip

Low inclination flips:
$e_{I} \uparrow$ monotonically, inclination stays low before flip.
i stays low before flip.

HIERARCHICAL THREE-BODY SYSTEMS

- Configuration:

$$
r_{I} \ll r_{2}
$$

- Hierarchical configurations are COMMON:
- For binaries with periods shorter than io days, $>40 \%$ of them are in systems with multiplicity ≥ 3. (Tokovinin 1997)
- For binaries with period <3 days, $\geq 96 \%$ are in systems with multiplicity ≥ 3. (Tokovinin et al. 2006)
- 282 of the 299 triple systems (-94.3%) are hierarchical. (Eggleton et al. 2007)
- Hierarchical 3-body dynamics gives insight for hierarchical multiple systems.

EXAMPLES OF HIERARCHICAL 3-BODY DYNAMICS

- For stellar systems:

Short Period Binaries

Image credit: NASA/Tod Strohmayer/Dana Berry e.g., Harrington 1969; Mazeh \&b Shaham 1979; Ford et al. 2000; Eggleton \&o Kiseleva-Eggleton 2001; Fabrycky \& Tremaine 2007; Shappee 也 Thompson 2013

Type Ia Supernova

e.g., Katz \&゚ Dong 2012; Kushnir et al. 2013

EXAMPLES OF HIERARCHICAL 3-BODY DYNAMICS

- Exoplanetary systems:

Eccentric Orbits

e.g., Holman et al. 1997; Ford et al. 2000; Wu \&゙ Murray 2003;

Exoplanets with large spinorbit misalignment

Image credit: ESO/A. C. Cameron
e.g., Fabrycky \& Tremaine 2007; Naoz et al. 2011, 2012; Petrovich 2015; Storch et al. 2014; Anderson et al. 2016

EXAMPLES OF HIERARCHICAL 3-BODY DYNAMICS

- Black hole systems: Merger of short period black hole binaries

Tidal disruption events

Spin-orbit Misalignment

* No correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions

Eccentric Proto-Hot Jupiters

Existence of eccentric portoHot 7upiters?

High e migration

Proto-Hot Jupiters

* A paucity of proto-hot Jupiters on super-eccentric orbits

* <44\% formed via LK mechanism

Closer Companions of Hot Jupiters

Existence a closer companion?

High e migration
=> No close companions

LK not dominate
LK dominate

Closer Companions of Hot Jupiters

Hot Jupiters (< 10 days) are no more or less likely to have exterior companions than giant planets (>10 days) => high e migration does not dominate

