tracking the metamorphosis of galaxies through cosmic time

Jennifer Lotz

Space Telescope Sciencē Institute

Galaxy Growth in the Cosmic Web

dark matter halos form out of initial density perturbations
galaxies assemble their mass via accretion and mergers along cosmic web
stars form out of cooled accreted gas

Galaxy Growth in the Cosmic Web

star formation regulated by gas inflows/outflows/feedback

- stellar and supernova feedback (important at low mass)
- active galactic nuclei feedback (important at high mass)
- virial heating in massive halos

Galaxy Growth in the Cosmic Web

galaxy structure (size, bulge/disk)
~ assembly + star-formation history
smooth accretion
= high angular momentum, large disk
violent mergers/instabilities
= angular momentum loss, bulge formation; correlated with black hole growth
environment/local density of galaxies: increased merger activity; destruction of low mass galaxies

[^0]
Cosmic Stellar Mass Density v. time

compilation from Madau \& Dickinson 2014

Cosmic Star-Formation Rate v. time

Lookback time (Gyr)

compilation from Madau \& Dickinson 2014

Star-Formation ~ Stellar Mass @ $0<\mathrm{z}<6$

SFR ~ stellar mass for star-forming galaxies at all redshifts?

SFR per unit stellar mass v. time

SFR/Mstar (sSFR) normalization evolves strongly with redshift
scatter in SFR-Mstar relation roughly constant with time \Rightarrow evolution NOT due to increased starburst (merger) fraction

Molecular Gas Fraction v. time

molecular gas fraction increases to z~3
sSFR ~ gas fraction

the morphologies of galaxies

Star-Forming Gas-Rich Rotating Disks @ z~2

extended H-alpha disks
rotating disks with high gas dispersions high turbulence?

Wisnioski et al. 2015,
Forster-Schreiber; Nelson

clumps/irregular in rest-frame UV/optical light
but smooth stellar mass maps

Fading/Quenching Galaxies @ z~2

Quenching = Compact/Bulge Structure

Structure (bulge strength, compactness, central density) is a better predictor of quenching than stellar mass at $\mathrm{z} \sim 2$.

Franx et al 2008, Bell et al. 2012; Bruce et al. 2012; Wang et al. 2012, Barro et al. 2013; Mortlock et al. 2014; Lang et al. 2014; Fang et al. 2014; Peth et al. 2015

Red/Quenched Galaxies increase with time

red low sSFR massive galaxies appear at $z>\sim 3$; increase in mass + number with time
(eg Whitaker et al.; Brammer et al; Brown et al; Faber et al; Bell et al)

Galaxy mergers can transform galaxies

e.g. Cox et al. 2006, 2008; Jonsson et al. 2008; Lotz et al. 2008, 2010; Snyder, Lotz et al. 2015

Merger \rightarrow Starburst \rightarrow AGN \rightarrow Spheroid ?

Galaxy Mergers are common

massive galaxies experience at least 1 major merger, and several minor mergers throughout their lifetime
major mergers were more frequent in the past* (observed to $\mathbf{z \sim 1}$)
\because tracking the metamorphosis of galaxies
over past 10 billion years

$$
0<z<3
$$

HST WFC3/IR: distant galaxy structures

need high-spatial resolution NIR imaging to probe rest-frame optical structures at lookback times >8 Gyr $(z>1)$
\Rightarrow Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) - PI S. Faber \& H. Ferguson

HST WFC3 NIR imaging wide fields: UDS, EGS, COSMOS, 1-orbit depth J + H, ~0.2 sq. degrees deep fields: GOODS-N + S, ~4-orbit depth Y, J, H, ~0.04 sq. degrees

Fading/Quenching Galaxies over Cosmic Time

Wuyts et al. 2012
(also Bell et al. 2012; Bruce et al. 2012; Wang et al. 2012, Lee et al. 2012;
Mortlock et al. 2014; Lang et al. 2014, Fang et al. 2013)

Cosmological hydro simulations (e.g. Illustris) can reproduce the modern Hubble sequence (z=0)

Snyder, Torrey, Lotz et al. 20I5b

Cosmological hydro simulations (e.g. Illustris) can reproduce the modern Hubble sequence (z=0)

Snyder, Torrey, Lotz et al. 20I5b

the metamorphosis of galaxies

10 Gyr ago

minor mergers ? newly quenched galaxies?

disk instabilities ?
accretion?
interactions and mergers ?

evolutionary paths of high-z galaxies

but structural evolution not always monotonic? simulated $z \sim 2.2$ compact galaxies can develop star-forming disks
triggered by accretion and/or gas-rich minor mergers?

Snyder, Lotz et al. 2015a, MNRAS, 451, 4290
(Moody et al. 2014, Ceverino et al. 2010, 2014 et al.; Zoltov et al. 2015)

evolutionary paths of high-z galaxies

tracking major mergers, minor mergers, disk instabilities, regrowth of new disks
requires counting more than
"bulges" and "disks"
compact
Barro et al. 2014 (also Brennan et al 2015; Zoltov et al. 2015)

parametric morphology - Sersic index

$$
\Sigma(r)=\Sigma_{e} e^{-\kappa\left[\left(r / r_{e}\right)^{1 / n}-1\right],}
$$

log Radius
Sersic 1968; Peng et al. 2002

image

model
residual

Sersic fits miss detailed information (disturbances, star-forming clumps ..)

Lotz et al. 2004

Mergers

more flux in
fewer pixels

Beyond the Hubble Sequence

non-parametric morphologies
G-M ${ }_{20}-\mathrm{C}-\mathrm{A}-\mathrm{MID} \Rightarrow$
Principal Component Analysis

+ Hierarchical Group Finder \Rightarrow
~8 unique "groups"

PC2 ~ Concentration

CANDELS $1.4<z<2$ rest-frame blue light

PC1 ~ G-M 20 bulge strength
Peth, Lotz et al., 2016, in press

Beyond the Hubble Sequence

non-parametric morphologies G-M ${ }_{20}-\mathrm{C}-\mathrm{A}-\mathrm{MID} \Rightarrow$

Principal Component Analysis + Hierarchical Group Finder \Rightarrow

Peth, Lotz et al., 2016, in press

Quenching = Compact/Bulge Structure

also : Franx et al 2008, Bell et al. 2012; Bruce et al. 2012; Wang et al. 2012, Barro et al. 2013; Mortlock et al. 2014; Lang et al. 2014; Fang et al. 2014

Growth of compact red galaxies at $\mathrm{z}<3$

Evolution of Size-Mass Relation

Stellar Mass

Stellar Mass Density (Msun Mpc^{-3})

build up of massive, large galaxies

Stellar Mass

Stellar Mass Density ($\mathrm{M}_{\text {sun }} \mathrm{Mpc}^{-3}$)

Lotz in prep, 2016

small galaxies quench first

Stellar Mass

$<$ sSFR $>=<$ SFR $>/<$ Mstar $>$
Lotz in prep, 2016

inferred 'gas fraction' (assume local SF - gas reln)

central bulge formation proceeds quenching

Stellar Mass

disk

$<$ PC1> (~G-M 20 bulge strength)

Lotz in prep, 2016

central bulge formation proceeds quenching

Stellar Mass

~ 11 Gyr ago
disk

$<$ PC1> (~G-M 20 bulge strength)

Lotz in prep, 2016

central bulge formation proceeds quenching

Stellar Mass

<sSFR> = <SFR $>/<$ Mstar $>$

disturbed galaxies are star-forming, large

Stellar Mass

fraction of high PC3 galaxies
(~Asymmetry/disturbance)

future quenched bulges are disturbed

Stellar Mass
Lotz in prep, 2016
fraction of high PC3 galaxies
(~Asymmetry/disturbance)

the metamorphosis of galaxies: what we know

- SFR ~ stellar mass with little scatter over cosmic time \Rightarrow few starbursts
- sSFR = SFR/stellar mass evolves strongly \Rightarrow tied to increasing molecular gas fraction
- large star-forming disks at z~2 are clumpy and turbulent
- fading/quenching galaxies are bulge-dominated; \Rightarrow structure is best predictor of quenching at $\mathrm{z} \sim 2$
- size-mass evolution: smallest star-forming galaxies at a given mass quench first, have lowest sSFR, gas fractions
the metamorphosis of galaxies: open questions
-Where are the $z>1$ galaxy mergers?
- sSFR ~ gas fraction ~ galaxy structure; Why? angular momentum \Leftrightarrow feedback \Leftrightarrow star-formation?
- How does feedback proceed on < 1 kpc scales? AGN or star-formation?

HDST: Breaking Resolution Barriers

important physics at sub-kpc scales $1 / 3$ galaxies at $\mathrm{z} \sim 2<1 \mathrm{kpc}$
"From Cosmic Birth to Living Earths" credit: Ceverino, Moody, \& Snyder

Where are the mergers? Do they form 1st bulges?

galaxy mergers expected to be common at high-redshift, and form first compact galaxies
but dust-obscured, with faint tidal tails difficult to identify in deep HST images.
-> need deeper, higher resolution images

Galaxy Growth in the Cosmic Web

star formation regulated by gas inflows/outflows/feedback

- stellar and supernova feedback (important at low mass)
- active galactic nuclei feedback (important at high mass)
- virial heating in massive halos

Where are metals, gas outflows?

$\log \Sigma_{\star}\left[\mathrm{M}_{\star} \mathrm{pc}^{-2}\right]$

$12+\log \mathrm{O} / \mathrm{H}$

lensed galaxies from Frontier Fields/GLASS: Jones et al. 2015

mass - metallicity relations on sub-kpc scales \Rightarrow
constrain enrichment, metal-rich outflows, and pristine gas accretion (feedback, accretion, + mergers)

Super-Massive Black Holes/AGNs at z > 1 ?

compilation from Kormendy \& Ho 2013

AGN and shocks at z > 1 on 100 pc scales

Summary

Detailed galaxy morphology can provide insight into the recent assembly history and test physical models of galaxy formation.

- Galaxy evolution is complicated;
- need a richer set of morphological statistics to probe assembly processes
- Size-mass evolution at $0.5<\mathrm{z}<3$. (lookback time $\sim 6-11$ Gyrs)
-- central bulge formation proceeds shut-down of star-formation at $z>1$
-- smallest galaxies at a given mass form bulges, quench first
-- highly disturbed galaxies are star-forming, large, more common at $\mathrm{z}<1$
HDST: 100 pc scales everywhere!
many high-redshift galaxies $<1 \mathrm{kpc}$
where are the $z>1$ mergers?
separate and measure stellar, AGN feedback, gas flows at ~ 100 pc scales

[^0]: EAGLE simulation

