We thank the IRTF TAC \& the Caltech TAC for enabling these follow-up observations and the K2 Guest Observer Office for supporting our numerous K2 proposals.

From Red Dwarfs to Pale Blue Dots: Searching for Potentially Habitable Planets in the Galaxy with Kepler, K2, TESS, \& Beyond

Courtney Dressing

NASA Sagan Fellow at Caltech
LUVOIR Seminar
November 30, 2016

Collaborators: Elisabeth Newton, Josh Schlieder, Andrew Vanderburg, lan Crossfield, Arturo Martinez, Heather Knutson, David Charbonneau, the K2 California Consortium, \& the HARPS-N Consortium

The Big Question: Are we alone?

Questions Addressed Today

 How COMmOn are planets orbiting low-mass starsHow diverse are the compositions of small planets

How can we identify
potentially habitable planets

Transit

Observations
Reveal
Planet Sizes

Radial Velocity Observations Reveal Planet Masses

How detectable are these signals?

Proxima

 Centauri
14\% Solar Radius

12\% Solar Mass

 3042 Kelvin1 Solar Radius
1 Solar Mass 5777 Kelvin

The Kepler Mission: 2009-2013

Milky Way Galaxy

Credit: NASA/Kepler mission

Kepler Looked for Planets Orbiting These Stars

Credit: NASA/Kepler mission

Locations of Kepler Planet Candidates

By Catalog Release Date

June 2010
Catalog Release

Credit: NASA/Kepler mission

Locations of Kepler Planet Candidates

By Catalog Release DateJune 2010
Catalog ReleaseFebruary 2011
Catalog Release

Credit: NASA/Kepler mission

Locations of Kepler Planet Candidates

By Catalog Release DateJune 2010
Catalog ReleaseFebruary 2011
Catalog Release
February 2012
Catalog Release

Credit: NASA/Kepler mission

Locations of Kepler Planet Candidates

As of January 7, 2013

- Earth-size

Super-Earth size 1.25-2.0 Earth-size

Neptune-size 2.0-6.0 Earth-size

Giant-planet size 6.0-22 Earth-size

Total Today:

4696!

2740

Credit: NASA/Kepler mission
\# of Planets = \# of Planet Candidates - \# of False Positives anet Planet

Number of Planets

Occurrence =
Number of Stars Rate "Searched"

Transit detectability depends on stellar and planetary properties

Smaller Planets Are More Prevalent

Planets Orbiting Low-Mass Stars are Common

Dressing \& Charbonneau 2015, ApJ, 807, 45

Are any of these planets habitable?

How large can a rocky planet be?

Our Solar System has Two Types of Planets

Planets 2-4x Larger than Earth are Common

Planets 2-4x Larger than Earth are Common

RV Observations of Transiting Planets Constrain the Densities of Small Worlds

HARPS-N at TNG

- LourioHatch.com

HIRES at Keck
The Light Poth of the High-Resolution Echelle Spectrograph

Dressing et al. 2015, ApJ, 800, 135

Dressing et al. 2015, ApJ, 800, 135

Carter+ 2012, Barros+ 2014, Haywood+ 2014,

Dressing et al. 2015, ApJ, 800, 135

Carter+ 2012, Barros+ 2014, Haywood+ 2014, Pepe+ 2014, Howard+ 2014

Dressing et al. 2015, ApJ, 800, 135

Dressing et al. 2015, ApJ, 800, 135

Dressing et al. 2015, ApJ, 800, 135

Dressing et al. 2015, ApJ, 800, 135

Carter+ 2012, Barros+ 2014, Haywood+ 2014, Pepe+ 2014, Howard+ 2014, Dumusque+ 2014
Charbonneau+ 2009, Dragomir+ 2013, Vanderburg+ 2014, Gillon+ 2012, Nelson+ 2014

Dressing et al. 2015, ApJ, 800, 135

Carter+ 2012, Barros+ 2014, Haywood+ 2014, Pepe+ 2014, Howard+ 2014, Dumusque+ 2014
Charbonneau+ 2009, Dragomir+ 2013, Vanderburg+ 2014, Gillon+ 2012, Nelson+ 2014

Dressing et al. 2015, ApJ, 800, 135

Carter+ 2012, Barros+ 2014, Haywood+ 2014, Pepe+ 2014, Howard+ 2014, Dumusque+ 2014
Charbonneau+ 2009, Dragomir+ 2013, Vanderburg+ 2014, Gillon+ 2012, Nelson+ 2014

Dressing et al. 2015, ApJ, 800, 135

Carter+ 2012, Barros+ 2014, Haywood+ 2014, Pepe+ 2014, Howard+ 2014, Dumusque+ 2014
Charbonneau+ 2009, Dragomir+ 2013, Vanderburg+ 2014, Gillon+ 2012, Nelson+ 2014

Dressing et al. 2015, ApJ, 800, 135

Carter+ 2012, Barros+ 2014, Haywood+ 2014, Pepe+ 2014, Howard+ 2014, Dumusque+ 2014
Charbonneau+ 2009, Dragomir+ 2013, Vanderburg+ 2014, Gillon+ 2012, Nelson+ 2014

Carter+ 2012, Barros+ 2014, Haywood+ 2014, Pepe+ 2014, Howard+ 2014, Dumusque+ 2014 Charbonneau+ 2009, Dragomir+ 2013, Vanderburg+ 2014, Gillon+ 2012, Nelson+ 2014

Dressing et al. 2015, ApJ, 800, 135

Are any of these planets habitable?

Rocky Surface

Is there an upper limit on the size of a rocky planet?

Look for planets smaller than
1.7 Earth Radif

Liquid Water

Look for planets with
temperate climates

Likely Locations of Habitable Worlds

Nearest HZ Earth
2.6 pc

Transiting HZ Earth 11 pc

How did these estimates fare?

Nearest HZ Earth 2.6 pc Transiting HZ Earth 11 pc

How did these estimates fare?

Nearest HZ Earth 2.6 pc TRAPPIST-1 System 12 pc

How did these estimates fare?

Proxima Centauri b 1.3 pc TRAPPIST-1 System 12 pc

Gillon et al. 2016, Nature Anglada-Escudé et al. 2016, Nature

Do our other neighbors host potentially habitable planets?

Milky Way Galaxy

Credit: NASA/Kepler mission

Credit: NASA/Kepler mission

Each K2 Campaign Lasts Roughly 80 Days

http://www.nasa.gov/kepler/keplers-second-light-how-k2-will-work

Where is K2 Looking?

K2 is Observing Many Small Stars

41%
 of selected K2 targets are K and M dwarfs

Huber et al. 2016, ApJS, 224, 2

Near-Infrared Spectroscopy

Enables Host Star Characterization

IRTF/SpeX
21 (mostly partial)
1 partial
$0.7-2.55$ microns (SXD mode)
2000 (SXD mode with $0.3 \times 15^{"}$ slit)
3.0 meters

Palomar 200"/TripleSpec
Nights Observed
Upcoming Nights
Wavelength Coverage
Spectral Resolution
Telescope Aperture

$\mathbf{7}$ (5 clear, 2 bad weather $)$
$\mathbf{2}$ full
$1.0-2.4$ microns
$2500-2700_{\left(1 \times 30^{\prime \prime} \text { slit }\right)}$
$2000^{\prime \prime}=5.1$ meters

We Concentrate on Bright Targets

Only 51\% of our targets are actually Low-mass Dwarfs

The Cool Dwarf Sample Extends from K3 - M4

Stellar Models Underestimate the Radii of Low-Mass Stars

Estimate Stellar Effective Temperatures using Features in J, H, \& K Bands

Estimate Stellar Radif from

Effective Temperatures \& Metallicities

Alternate Approach: Directly Estimate Temperatures, Luminosities, and Radii Using H-Band Features

Our Typical Cool Dwarfs are Roughly 0.6 $\mathrm{R}_{\text {sun }}$

Most stars are larger than previously estimated ($\Delta \mathrm{R}_{\mathrm{s}}=+0.13 \mathrm{R}_{\text {sun }}=34 \%$)

Most stars are larger than previously estimated ($\Delta \mathrm{R}_{\mathrm{s}}=+0.13 \mathrm{R}_{\text {sun }}=39 \%$)

We Use the Revised Stellar Radii to Update the Radii of the Associated Planet Candidates

Published planets from Adams+ 2016, AJ accepted, arXiv:1603.06488;
Barros+ 2016, A\&A accepted, arXiv:1607.02339, Crossfield+ 2016, ApJ accepted, arXiv:1607.05263; Montet+ 2015, 809, 25; Pope+ 2016, MNRAS accepted, arXiv:1606.01264; Vanderburg+ 2016, ApJS, 222, 14

Most of our Planets are Small

Our K2 Planet Sample Is Similar to the Kepler Planet Sample...

...but the K2 planets generally orbit brighter stars

Our Smaller Planets Tend to Orbit Cooler Stars (consistent with expected detection bias)

Spectra are Expensive!

How can we classify the full K2 M dwarf sample?

- Trained random forest using spectroscopically-classified stars
- Reported probabilities that individual targets are M dwarfs

Girish Estimated K2's Sensitivity to

 Planetary Systems Orbiting M DwarfsTypical K2 M dwarfs host 1.2 small planets with periods < 50 days

Size Range:	Period < 10 Days	Period $\mathbf{1 0}$ - 50 Days
Smaller than Earth	0.21	0.07
Earth - Neptune	0.35	0.45
Neptune - Jupiter	0.07	0.07

Looking toward the future:

A Pathway for the Discovery \& Characterization of Potentially Habitable Worlds

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky
Find cool potentially habitable planets
Measure masses to identify rocky worlds
Determine atmospheric compositions
Search for biosignatures
Perform detailed characterization

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky
(Work in progress for cool planets)

Find cool potentially habitable planets

Measure masses to identify rocky worlds

Determine atmospheric compositions

Search for biosignatures

Explorer Mission

launch in 2017, to find hundreds of nearby small exoplanets amenable to detailed characterization

Ricker et al., JATIS, (2014)

George Ricker (P.I.)
Roland Vanderspek (Deputy P. I.) Massachusetts Institute of Technology
science center shared between MIT + Harvard/Smithsonian CfA
collaboration including: NASA Goddard, NASA Ames, MIT Lincoln Lab, Orbital Sciences, STScl, SAO, MPIA-Germany, Las Cumbres Observatory, Geneva Observatory, OHPFrance, University of Florida, Aarhus University-Denmark, Harvard College Observatory, Vanderbilt University

Ricker et al., JATIS, (2014)

Ricker et al. (2014), Sullivan et al. (2015)

FOV from one TESS camera:

FOV from one TESS camera:

constellations by H. A. Rev
Slide by Zach Berta-Thompson

TESS Slides from Zach Berta-Thompson

TESS Slides from Zach Berta-Thompson

Kıcker et al. (¿Ul4), sullıvan et al. (2015)

Play TESS Movie

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky
(Work in progress for cool planets)

Find cool potentially habitable planets

Measure masses to identify rocky worlds

Determine atmospheric compositions

> Search for biosignatures

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky
(Work in progress for cool planets)
Find cool potentially habitable planets
Measure masses to identify rocky worlds

Determine atmospheric compositions

Search for biosignatures

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky
Find cool potentially habitable planets
Measure masses to identify rocky worlds
Determine atmospheric compositions
Search for biosignatures

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky
(Work in progress for cool planets)
Find cool potentially habitable planets
Measure masses to identify rocky worlds
Determine atmospheric compositions

Search for biosignatures

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky

(Work in progress for cool planets)
Find cool potentially habitable planets
Measure masses to identify rocky worlds
Determine atmospheric compositions
Search for biosignatures
Perform detailed characterization

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky
(Work in progress for cool planets)
Find cool potentially habitable planets
Measure masses to identify rocky worlds
Determine atmospheric compositions

Search for biosignatures

Perform detailed characterization

Transits, Eclipses, and Phase Curves of

 Exoplanets Reveal Atmospheric Properties

Transit

LUVOIR will Assess Planetary Habitability

LUVOIR 16 meters

Hubble mirror
2.4 meters

Pathway to Earth 2.0

Constrain planet frequencies

Figure out which sizes of planets are rocky

Find cool potentially habitable planets

Measure masses to identify rocky worlds
Determine atmospheric compositions
Search for biosignatures
E
Perform detailed characterization

Big Picture Summary

Big Picture Summary

- 2.5 small planets per M dwarf
- 0.25 Earth-like planets per M dwarf How diverse are the compositions of small planets

How can we identify
potentially habitable planets

Big Picture Summary

- 2.5 small planets per M dwarf
- 0.25 Earth-like planets per M dwarf
- Highly-irradiated small planets have Earth-like compositions
- Larger planets require volatiles

How can we identify ?
potentially habitable planets

Big Picture Summary

- 2.5 small planets per M dwarf
- 0.25 Earth-like planets per M dwarf
- Highly-irradiated small planets have Earth-like compositions
- Larger planets require volatiles
- Planet detection with K2 + TESS
- Follow-up with JWST + ELTs
- Biosignatures with LUVOIR?

K2 Highlights

- We've acquired NIR spectroscopy of 144 possible low-mass stars hosting K2 planet candidates
- 51\% of our targets are actually low-mass dwarfs
- Classified stars using empirical relations based on interferometry (Newton+ 2015, Mann+ 2013)
- Our revised stellar radii are 6-39\% larger

- 63 planets are smaller than Neptune
- 3 planets are in or near the habitable zone
- Red dwarfs have lots of small planets!

K2 planets are great for follow-up studies!

Acknowledgements

HARPS-N Consortium: Francesco Pepe, Andrew Collier Cameron,
Stephane Udry, David Latham, Emilio Molinari, David Charbonneau, Lars Buchhave, Xavier Dumusque, Sara Gettel, Raphelle Haywood, John Asher Johnson, Mercedes Lopez-Morales, David Phillips, Andrew Vanderburg, Laura Affer, Aldo Bonomo, Rosario Consentino, Pedro Figueira, Aldo Fieorenzano, Avet Harutyunyan, Eric Lopez, Christophe Lovis, Luca Malavolta, Michel Mayor, Giusi Micela, Annelies Mortier, Fatemeh Motalebi, Valerio Nascimbeni, Giampaolo, Piotto, Don Pollacco, Didier Queloz, Ken Rice, Dimitar Sasselov, Damien Segransan, Alessandro Sozzetti, Andrew Szentgyorgyi, Chris Watson
K2 California Consortium (K2C2): Kimberly Aller, Christoph Baranec, Chas Beichman, Bjoern Benneke, Jessie Christiansen, David Ciardi, Justin Crepp, Ian Crossfield, Trevor David, BJ Fulton, Brad Hansen, Thomas Henning, Lynne Hillenbrand, Andrew Howard, Howard Isaacson, Heather Knutson, Sebastian Lepine, Michael Liu, John Livingston, Arturo Martinez, Erik Petigura, Evan Sinukoff, Josh Schlieder, Michael Werner
TESS Minjas: Phil Muirhead, Andrew Mann, Barbara Rojas Ayala
Current funding provided by the NASA Sagan Fellowship Program Ground-based telescope time from Caltech TAC \& IRTF TAC. K2 funding \& targets from NASA.

Big Picture Summary

- 2.5 small planets per M dwarf
- 0.25 Earth-like planets per M dwarf
- Highly-irradiated small planets have Earth-like compositions
- Larger planets require volatiles
- Planet detection with K2 + TESS
- Follow-up with JWST + ELTs
- Biosignatures with LUVOIR?

K2 Highlights

- We've acquired NIR spectroscopy of 144 possible low-mass stars hosting K2 planet candidates
- 53% of our targets are actually low-mass dwarfs
- Classified stars using empirical relations based on interferometry (Newton+ 2015, Mann+ 2013)
- Our revised stellar radii are 6-39\% larger

- 63 planets are smaller than Neptune
- 3 planets are in or near the habitable zone
- Red dwarfs have lots of small planets!

K2 planets are great for follow-up studies!

ADDITIONAL SLIDES

Most TESS Planets will be Inside the IWA

Figure 2.1.1 from the Habitability Science Case Simulated Planets from Sullivan et al. (2015)

Some M Dwarf HZs will be Accessible

Figure 2.1.2 from the Habitability Science Case Stars from Dittmann et al. (2015)

Exoplanet science goals in Roadmap

How do we detect life on an exoplanet?

Observations with Large Space Telescopes Could Generate Coarse Surface Maps

Percent Land

0.00	50.00	100.00

The M Dwarf Advantage

Detectability of
 Earth-Iike planet
 Sun M dwarf

Typical
M dwarf
Orbital Period (days)
Transit Probability (\%) 0.460 .89

Transit Depth (ppm) 84250 1890
Doppler Wobble (cm/s) 9 21
17

1.41

85

Spectroscopic investigations could expose potentially habitable worlds

