## $2>1$ : Using Binaries to Learn about Exoplanets

## Timothy J. Rodigas

Hubble Fellow
Carnegie DTM
LUVOIR Seminar
September 21, 2016

## Binary power \#1:

Can use binaries to image planets

## Where do planets live?



## Status Quo



## Status Quo



How to Image Planets

## How to Image Planets

How to Image Planets

## How to Image Planets

"control"

## How to Image Planets

"control"


## How to Image Planets

"control"

## How to Image Planets

"control"


## How to Image Planets

"control"


## How to Image Planets

"control"


## How to Image Planets:

"Angular Differential Imaging" = ADI

## How to Image Planets:

"Angular Differential Imaging" = ADI

## How to Image Planets: <br> "Angular Differential Imaging" = ADI


median

## How to Image Planets:

"Angular Differential Imaging" = ADI

median

## How to Image Planets:

"Angular Differential Imaging" = ADI

median

## How to Image Planets:

"Angular Differential Imaging" = ADI

median

# Angular Differential Imaging 



# Angular Differential Imaging 



# Angular Differential Imaging 

Imoge opres IDA, 10 s d'integration


# Angular Differential Imaging 

Imoge opres IDA, 10 s d'integration


# Angular Differential Imaging 



# Angular Differential Imaging 



## Great! What's the catch?



Maire et al. 2015

## Great! What's the catch?



Maire et al. 2015

## Great! What's the catch?



Maire et al. 2015


Maire et al. 2015

## The Problems

## The Problems

1. Time is the enemy
2. Self-subtraction
3. Self-subtraction gets worse closer to star (where planets live)

## The Problems

1. Time is the enemy
2. Self-subtraction
3. Self-subtraction gets worse closer to star (where planets live)

## Solutions?

## The Problems

1. Time is the enemy
2. Self-subtraction
3. Self-subtraction gets worse closer to star (where planets live)

## Solutions?

1. A reference PSF that doesn't contain any planet flux
2. A reference PSF that is identical to the target PSF

## The Problems

1. Time is the enemy
2. Self-subtraction
3. Self-subtraction gets worse closer to star (where planets live)

## Solutions?

1. A reference PSF that doesn't contain any planet flux
2. A reference PSF that is identical to the target PSF

Hmm.....

## Space

## Space

Earth's
atmosphere

## Space

Earth's
atmosphere

## Space

Earth's
atmosphere

## Space



Earth's atmosphere

## Space



Earth's atmosphere


## Space



Earth's
atmosphere
$=$ junk


## Space



Earth's atmosphere
$=$ junk


## Space



Earth's atmosphere
$=$ junk

2 stars look identical if they are within the "isoplanatic patch"


## MagAO happens here



VisAO diffraction-limited, Clio-2: diffraction-limited,1-5 $\mu \mathrm{m}$, $0.5-1 \mu \mathrm{~m}$ low-res spectroscopy

MagAO happens here


New way to image planets: "Binary Differential Imaging" = BDI



Visual binaries are nature's home-grown solution

## Is BDI actually better? Testing 1 fake planet




## 10,000 fake (random) planets



BDI detects fainter planets closer to the star

## 10,000 fake (random) planets



BDI detects fainter planets closer to the star

## 10,000 fake (random) planets



BDI detects fainter planets closer to the star

## 10,000 fake (random) planets



BDI detects fainter planets closer to the star

## 10,000 fake (random) planets

 projected separation (arcseconds)

BDI detects fainter planets closer to the star

## Future applications of BDI

## Future applications of BDI

- WFIRST? probably not (fixed coronagraph?)


## Future applications of BDI

- WFIRST? probably not (fixed coronagraph?)
- JWST? Yes!
- NIRCam
- huge FOV (2') $\rightarrow$ can fit wide binaries
- NO ATMOSPHERE! $\rightarrow$ ultra-stable PSF
- big primary, long wavelengths


## Future applications of BDI

- WFIRST? probably not (fixed coronagraph?)
- JWST? Yes!
- NIRCam
- huge FOV (2') $\rightarrow$ can fit wide binaries
- NO ATMOSPHERE! $\rightarrow$ ultra-stable PSF
- big primary, long wavelengths
- HDST? Sure!
- As long as coronagraph is removable, BDI can be employed


## Future applications of BDI

- WFIRST? probably not (fixed coronagraph?)
- JWST? Yes!
- NIRCam
- huge FOV (2') $\rightarrow$ can fit wide binaries
- NO ATMOSPHERE! $\rightarrow$ ultra-stable PSF
- big primary, long wavelengths
- HDST? Sure!
- As long as coronagraph is removable, BDI can be employed
- Ground-based? Definitely
- right now: MagAO (current survey), LBT
- future: GMT, TMT, E-ELT

My dream for LUVOIR...

## My dream for LUVOIR...

- A WIDEEEEE field of view imager that doesn't saturate easily, minimal field distortion


## My dream for LUVOIR...

- A WIDEEEEE field of view imager that doesn't saturate easily, minimal field distortion
- Or...even better:
- Forget about binaries, just look at single stars, but use a special type of coronagraph: the vector apodizing phase plate


## My dream for LUVOIR...

- A WIDEEEEE field of view imager that doesn't saturate easily, minimal field distortion
- Or...even better:
- Forget about binaries, just look at single stars, but use a special type of coronagraph: the vector apodizing phase plate


## My dream for LUVOIR...

- A WIDEEEEE field of view imager that doesn't saturate easily, minimal field distortion
- Or...even better:
- Forget about binaries, just look at single stars, but use a special type of coronagraph: the vector apodizing phase plate
- With vAPP, can achieve true simultaneous differential imaging and improve contrast close to star...+ no need for rotation, no need for reference PSF!


## Binary power \#2:

Can use binaries to learn about hidden planets

## RV | Direct Imaging

- close-in planets ( $a<5 \mathrm{AU}$ ) • long-period planets ( $\mathrm{a}>5 \mathrm{AU}$ )
- old, quiet stars
- minimum planet mass
- period and eccentricity
- young, active stars
- model-dependent true mass
- all orbital elements over time

RV \& direct imaging are complimentary!

## Directly detecting long-term trends



Crepp et al. 2014

## Directly detecting long-term trends



Crepp et al. 2014


## MagAO Imaging of Long-period Objects (MILO)

- Collaboration with Paul Butler; Magellan PFS, MIKE, \& AAT RV data, imaging with MagAO; now merging with Justin Crepp's TRENDS program
- 30-40 targets with long-term trends
- Imaged 10 stars so far, dozens of new imaged companions


## First Result:

## A binary with a super-eccentric planet sandwiched in between




## Companion is an M4-M5



## M dwarf at $\sim 15-20 \mathrm{AU}$ <br> Gas giant at 2 AU , super eccentric




Planet

## Constraints from dynamics



Assuming Kozai interactions:
-planet's mass < 1.5 M_Jup
-mutual inclination > 38 deg
-initial mutual inclination > 62 deg
-M dwarf as close as 13 AU!
-How did this planet form?!?!?

## Second MILO Discovery



## Second MILO Discovery



Rodigas et al., 2016b

## Not a background object...



## Combine RV + Imaging...







## What is it? A white dwarf!



## Problem: ages don't agree

-Primary's age is $7+/-1$ Gyr
-White dwarf cooling age is < 4 Gyr
-WD progenitor main sequence lifetime < 200 Myr
-So...what's going on?
—WD evolution must have been delayed—by 3 Gyr -Merger of some sort $\rightarrow$ most plausible is two 0.5 Msun white dwarfs!

My dream for LUVOIR...

## My dream for LUVOIR...

- Big enough aperture to directly image RV planets (either in reflected light or thermal imaging?)


## My dream for LUVOIR...

- Big enough aperture to directly image RV planets (either in reflected light or thermal imaging?)
- Put RV+imaging information together to fully constrain planet mass and orbit


## My dream for LUVOIR...

- Big enough aperture to directly image RV planets (either in reflected light or thermal imaging?)
- Put RV+imaging information together to fully constrain planet mass and orbit
- $\rightarrow$ constrain formation and evolution theories


## Binary power \#3:

Can use binaries to directly measure vsini

## The need for vsini

## -Stellar evolution

-rotation changes as star evolves
e.g., v = 4/pi * <vsini> = 15.6-4.2*Sp.Type (Gray 1989a)

## -Stellar ages

-main sequence stars spin down over time; measure vsini, infer age e.g., vsini (km/s) ~ 5 * (age/Gyr) ${ }^{-1 / 2}$ (Barry et al. 1987)

## -Exoplanets

-obliquities of transiting planets [sini $=$ vsini/v $=$ vsini $/(2 \pi R / P)]$
-true masses of radial velocity (RV) planets (if sini $=$ sinip $)$

Current method for measuring vsini

## Current method for measuring vsini

Rotational Broadening: a way of measuring stellar rotation


## Current method for measuring vsini

Rotational Broadening: a way of measuring stellar rotation


## Current method for measuring vsini

Rotational Broadening: a way of measuring stellar rotation


## Limited to vsini > 2 +/- 0.5 km/s

Nearby stars (most with
planets)

| Star | $V \sin i(\mathrm{~km} / \mathrm{s})$ |
| :---: | :---: |
| $v$ And $^{+}$ | $9.62_{-0.50}^{+0.50}$ |
| $\alpha$ Cen B | $1.00_{-0.60}^{+0.60}$ |
| $\epsilon$ Eri | $2.45_{-0.50}^{+0.50}$ |
| HD 19994 | $8.57_{-0.50}^{+0.50}$ |
| $\iota$ Hor | $6.47_{-0.50}^{+0.50}$ |
| HD 10647 | $5.61_{-0.50}^{+0.50}$ |
| HD 179949 | $7.02_{-0.50}^{+0.50}$ |
| HD 20794 | $1.50_{-1.50}^{+1.50}$ |
| HD 196885 | $7.80_{-0.50}^{+0.50}$ |
| HD 40979 | $7.43_{-0.50}^{+0.50}$ |
| HD 136118 | $7.33_{-0.50}^{+0.50}$ |
| $\tau$ Gru | $5.78_{-0.50}^{+0.50}$ |
| HD 113337 | $6.30_{-1.00}^{+1.00}$ |
| 61 Vir | $2.20_{-0.30}^{+0.30}$ |
| $\mu$ Ara $^{+}$ | $3.12_{-0.50}^{+0.50}$ |
| HD 114613 | $2.70_{-0.90}^{+0.90}$ |
| 70 Vir | $2.68_{-0.50}^{+0.50}$ |
| HD 30562 | $4.32_{-0.50}^{+0.50}$ |
| 47 UMa | $2.80_{-0.50}^{+0.50}$ |
| HD 52265 | $4.67_{-0.50}^{+0.50}$ |

## Limited to vsini > 2 +/- 0.5 km/s

Nearby stars (most with
planets)

| Star | $V \sin i(\mathrm{~km} / \mathrm{s})$ |
| :---: | :---: |
| $v$ And $^{+}$ | $9.62{ }_{-0.50}^{0.50}$ |
| $\alpha$ Cen B | $1.00{ }_{-0.60}^{+0.60}$ |
| $\epsilon$ Eri | 2.45 |
| HD 19994 | $8.57{ }_{-0.50}^{+0.50}$ |
| $\iota$ Hor | $6.47{ }_{-0.50}^{+0.50}$ |
| HD 10647 | $5.61{ }_{-0.50}^{+0.50}$ |
| HD 179949 | $7.02{ }_{-0.50}^{+0.50}$ |
| HD 20794 ${ }^{+}$ | $1.50{ }_{-1.50}^{+1.50}$ |
| HD 196885 | $7.80{ }^{-1.550}$ |
| HD 40979 | $7.43{ }_{-0.50}^{+0.50}$ |
| HD 136118 | $7.33{ }_{-0.50}^{+0.50}$ |
| $\tau$ Gru | $5.78{ }_{-0.50}^{+0.50}$ |
| HD 113337 | $6.30{ }_{-1.00}^{+1.00}$ |
| $61 \mathrm{Vir}^{+}$ | $2.20{ }_{-0.30}^{+0.30}$ |
| $\mu \mathrm{Ara}^{+}$ | $3.12{ }_{-0.50}^{+0.50}$ |
| HD 114613 | $2.70{ }_{-0.90}^{+0.90}$ |
| 70 Vir | $2.68{ }_{-0.50}^{+0.50}$ |
| HD 30562 | $4.32{ }_{-0.50}^{+0.50}$ |
| $47 \mathrm{UMa}^{+}$ | $2.80{ }_{-0.50}^{+0.50}$ |
| HD 52265 | $4.67{ }_{-0.50}^{+0.50}$ |

## What do stars do?

## ,










$\stackrel{\Omega}{\gamma}$

## Start with a single, stationary star

## Start with a single, stationary star

## Start with a single, stationary star

Vorb $=0 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$

## Start with a single, stationary star

Vorb $=0 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$
slit

## Start with a single, stationary star

Vorb $=0 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$

| slit |
| :--- |
|  |



## Start with a single, stationary star

Vorb $=0 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$

slit


## Resolved binary

Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$


## Resolved binary

Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$

## Resolved binary

Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$


## Resolved binary

## Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$



## Resolved binary

## Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$



## Resolved binary

Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$


## Resolved binary

## Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$



## Resolved binary

## Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$



## Resolved binary

## Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$



## Unresolved binary

Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$
sep $=0.2 "$

## Unresolved binary

Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$


## Unresolved binary

## Vorb $=10 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$



## Vote: which one's tilted?




A: left
B: right
C: neither

## Vote: which one's tilted?




A: left
B: right
C: neither

## Seeing the (small!) excess



## Seeing the (small!) excess



## Vorb $=2 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$


0.00093 "

Vorb $=2 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}$

0.00093 "

$$
\text { Vorb }=2 \mathrm{~km} / \mathrm{s}=\mathrm{Vrad}
$$


0.00093 "


This spectroscopic binary is ~ equivalent to the Sun at 10 pc

## Using binaries to build a simple model

## Using binaries to build a simple model



## Using binaries to build a simple model



# Using binaries to build a simple model 



Using binaries to build a simple model


Using binaries to build a simple model


# Using binaries to build a simple model 



# Using binaries to build a simple model 



Fact: A (non pole-on) rotating star can be treated as the superposition of an infinite number of spectroscopic binaries.

# Fact: A (non pole-on) rotating star can be treated as the superposition of an infinite number of spectroscopic binaries. 

The resulting spectrum will be tilted. How do we measure the tilt?

## How to measure the tilt




## How to measure the tilt



## How to measure the tilt






$\Delta R V_{\text {vsini }}=1 / 2$ * $($ Red - Blue $)$

spectral slit

No measured RV

## spatial <br> 

spectral slit


RV depends on just 4 parameters

(a)

(c)

(b)

(d)

RV depends on just 4 parameters


$V \sin i \approx 2 \mathrm{~km} / \mathrm{s}\left(\frac{\mathrm{RV}_{V \sin i}}{1.82 \mathrm{~m} / \mathrm{s}}\right)\left(\frac{\rho}{0.465 \mathrm{mas}}\right)^{-1}\left(\frac{\mathrm{FWHM}}{0 .{ }^{\prime \prime} 7}\right)\left(1-\frac{\epsilon}{4}\right)^{-1}$

(c)

(d)

RV depends on just 4 parameters


## Proof of concept: a nearby K3III giant

-Interferometrically-measured radius (57 Rsun)
-Hipparcos parallax (18.09 mas $\rightarrow 55 \mathrm{pc}$ )
-Several previously-measured vsini values (latest $=2.6 \mathrm{~km} / \mathrm{s}$ )
-Time awarded with VLT/UVES: 32 (1 second!) exposures at 8 slit angles
-Data reduction: split 2D spectra, feed into planet-hunting pipeline (already written), compute $\Delta \mathrm{RV}$ s

## Reducing Echelle spectra is hard!

echelle order

1. de-bend order
/// //| / / // /// // /
2. straighten lines

## Reducing Echelle spectra is hard!

echelle order

1. de-bend order
/// //l / / // /// // /
2. straighten lines

## Predictions for this star




## Predictions for this star



## Results: the first direct measurement of vsini

Results: the first direct measurement of vsini


Results: the first direct measurement of vsini


## Results: the first direct measurement of vsini



Results: the first direct measurement of vsini


## My dream for LUVOIR...

Because signal depends so strongly on resolution...


## My dream for LUVOIR...

Because signal depends so strongly on resolution...

(c)


## My dream for LUVOIR...

Because signal depends so strongly on resolution...



## My dream for LUVOIR...

Because signal depends so strongly on resolution...



Summary

## Summary

Binaries can be used to directly image planets (Binary Differential Imaging)
-Space-based will be even better for this!

## Summary

Binaries can be used to directly image planets (Binary Differential Imaging)
-Space-based will be even better for this!
Binaries can be used to infer properties of hidden planets (MagAO Imaging of Long-period Objects [MILO])
-Imaging RV exoplanets is the future

## Summary

Binaries can be used to directly image planets (Binary Differential Imaging)
-Space-based will be even better for this!
Binaries can be used to infer properties of hidden planets (MagAO Imaging of Long-period Objects [MILO])
-Imaging RV exoplanets is the future

Concept of spectroscopic binaries can be used to directly measure stellar vsini
-Signal depends strongly on spatial resolution $\rightarrow$ AO or space?

