BEYOND THE HORIZON: What is left to learn after Hubble about the first billion years?

STEVEN FINKELSTEIN THE UNIVERSITY OF TEXAS AT AUSTIN

GALAXY EVOLUTION

What are the (changing?) physical effects responsible for the rise and fall of the cosmic star-formation rate density?

GALAXY SELECTION

Filters

GALAXY SELECTION

GALAXY SELECTION

OUR TOOLBOX

HUDF
CANDELSGOODS

OUR TOOLBOX

CANDELS

CANDELS

CHEMICAL ENRICHMENT

WHEN DO THE FIRST GALAXIES FORM?
 HOW EARLY DO METALS FORM?

Credit:Tiffany Davis - STSc|

CHEMICAL ENRICHMENT

CHEMICAL ENRICHMENT

GALAXIES ON AVERAGE ARE
LESS DUSTY WITH INCREASING REDSHIFT

THE MOST MASSIVE GALAXIES APPEAR DUSTY, EVEN AT Z=7. LOW-MASS GALAXIES ARE LESS DUSTY, THOUGH NOT METAL-FREE.

CHEMICAL ENRICHMENT

LUMINOSITY FUNCTIONS

Much effort hàs been spent computing the rest-frame UV luminosity functions.

LU| LUMINOSITY FUNCTIONS CAN TELL US ABOUT THE PHYSICAL PROCESSES REGULATING STARFORMATION IN THE DISTANT UNIVERSE
Mi
THE REST-UV LUMINOSITY FUNCTION ALSO irame
UV ALLOWS US TO CALCULATE THE STARFORMATION RATE DENSITY

THE GOOD NEWS

SF+2015

A SURPRISE!.

BOUWENS+2011

WHATS HAPPENING AT. THE BRIGHT END?

CAN WE UNDERSTAND THE INTERESTING EVOLUTION AT THE BRIGHT END?

To put this in context, we set out to measure the stellar mass growth of galaxies in context of their dark matter halos.

- For this study, we considered Muv=-21 galaxies ($\sim L^{*}$)
- We can detected them with IRAC, and thus obtain more robust physical property measurements.
- Halo masses estimated via abundance matching.

A CHANGING ISM SHOULD REVEAL.ITSELF IN THE STAR-FORMING PROPERTIES OF DISTANT GALAXIES Measured stellar masses via SED fitting using HST ACS +WFC3 and deep (50+ hr) IRAC imaging.

A CHANGING ISM SHOULD REVEAL.ITSELF IN THE STAR-FORMING PROPERTIES OF DISTANT GALAXIES Measured stellar masses via SED fitting using HST ACS

A CHANGING ISM SHOULD REVEAL.ITSELF IN THE STAR-FORMING PROPERTIES OF DISTANT GALAXIES

z	\log	\log		
$M_{\text {halo }}$	M_{*}	SMHM	SBF	
4	$\mathbf{1 1 . 9}$	$\mathbf{9 . 9}$	$\mathbf{0 . 0 1 0}$	$\mathbf{0 . 0 6}$
5	$\mathbf{1 1 . 7}$	$\mathbf{9 . 9}$	$\mathbf{0 . 0 1 5}$	$\mathbf{0 . 0 9}$
6	11.6	$\mathbf{9 . 9}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 1 2}$
7	$\mathbf{1 1 . 4}$	$\mathbf{9 . 8}$	$\mathbf{0 . 0 2 7}$	$\mathbf{0 . 1 6}$

A CHANGING ISM SHOULD REVEAL ITSELF IN THE

- What physical effects could cause this result?
- A) Galaxies have a higher star formation efficiency.
- Increased redshift \rightarrow increased gas density \rightarrow faster freefall time \rightarrow more star formation
- More star formation happens in self-gravitating clumps, which have high SFE (e.g., Dekel+2009, Ceverino+2010; Genzel+2011)

- B) Galaxies have more fuel available for star formation.

- Higher gas density leads to more gas in the cool phase.
- Weaker feedback leads to more gas available for star formation.
- Higher gas density could lead to more energy from SNe being radiated away (e.g., Creasey+2013).
- Less dust leads to less momentum-driven radiative feedback (e.g., Murray+2010, Andrews and Thompson 2011).
- Less/zero AGN feedback.

A CHANGING ISM SHOULD REVEAL ITSELF IN THE

-What physical effects could cause this result?

- A) Galaxies have a higher star formation efficiency.
- Increased redshift \rightarrow increased gas density \rightarrow faster freefall time \rightarrow more star formation
- More star formation happens in self-gravitating clumps, which have high SFE (e.g., Dekel+2009, Ceverino+2010; Genzel+2011)

- B) Galaxies have more fuel available for star formation.

If Scenario B is the answer, it could have a dramatic effect on the escape of Le α photons from galaxies.

Canstest this scenario directly with ALMA, (egg., by measuring the redshift evolution of the gas-totstellar mass ratio.

OTHER EVIDENCE FOR LACK OF FEEDBACK/INCREASED SFE?

STELLAR
MASS
FUNCTIONS

OTHER EVIDENCE FOR LACK OF FEEDBACK/INCREASED SFE?

STELLAR MASS
 FUNCTIONS

HOW DO WE OBTAIN REIONIZATION CONSTRAINTS

 FROM THE LUMINOSITY FUNCTION?Step 1: Integrate the UV LF to obtain the specific UV luminosity density: $\rho_{\mathrm{uv}}\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~Hz}^{-1} \mathrm{Mpc}^{3}\right.$]

Assumption: Need to assume a minimum value of M_{Uv} (especially when $\alpha<2$).

- Common values in the literature: $-17,-15,-13,-10$
- We see galaxies down to -17 , so its likely fainter. We assume $M_{\text {lim }}=-13$, though this bears watching from the theoretical side (e.g., Jaacks+12, O'Shea+15).
- Step 2: Choose a reionization model.
- Assumptions: Madau (1999) model, $\mathrm{C}=3, \mathrm{f}_{\text {esc }}=13 \%$ (upper limit at $z=6$ from SF+2012b), conversion from ionizing to non-ionizingg UV for a Salpeter IMF, and 20\% Solar metallicity.

HOW DO WE OBTAIN REIONIZATION CONSTRAINTS FROM THE LUMINOSITY FUNCTION?

OUR FIDUCIAL MODEL

CONSTRAINTS ON THE REIONIZATION HISTORY

NEEDED IMPROVEMENTS

Our current constraints from the LF give 68% confidence range on the 50% reionization redshift of $6.7<z<9.4$.

This uncertainty is driven by the fact that faint galaxies dominate the photon budget, and the current uncertainties on α are large.

Improvements will happen with JWST, but we are cracking this door open right now with the Hubble Frontier Fields.

- Will not only improve LF at $M \sim-17$ to 19, but can also probe to ~-16 to test assumptions on $\mathrm{M}_{\text {lim }}$.

FINDING THE FAINT GALAXIES

RACHAEL LIVERMORE, SF+2015

FINDING THE FAINT. GALAXIES

F160W

Wavelet-subtracted image

Difference

RACHAEL LIVERMORE, SF+2015

WHAT DO WE NEED?

We need to understand the luminosity function down to -13. If it turns over at brighter magnitudes, we have a photon production crisis.

JWST deep fields will only reach around -15.5 or so in UV absolute magnitude.

JAACKS + 13

PAARDEKOOPER+15

ACCOUNTING FOR ALL REIONIZING PHOTONS

ACCOUNTING FOR ALL REIONIZING PHOTONS

So a 14 m ATLAST can ao What if we assume that halos
$\sim 90 \%$ of the needed ior with $\mathrm{M}>10^{10} \mathrm{M}_{\text {sol }}$ do not have

- But, we need to conside any escaping ionizing radiation?

telescope	
HST	5\%
JWST	45\%
ATLAST (14M)	80\%

[^0]
HOW ELSE CAN WE BETTER CONSTRAIN REIONIZATION?

LYMAN ALPHA EMISSION

Over the past few years we have been collecting Keck spectroscopic data on our z > 6 galaxy candidates.

Rather than hitting as many galaxies as possible for short integrations (similar to other MOSFIRE programs), we go deep, at least 5, and up to $20 \mathrm{hr} / \mathrm{object}$.

- First run was in April 2013.

SF+2013

TILVI, CP, SF+2014

LYMAN ALPHA EMISSION

We have continued to observe, obtaining data over 13.5 nights over the past two years (primarily through NASA, but also with collaborators at UC).

- We have observed ~ 40 candidate $z>7$ galaxies at $\mathrm{J}<27$ to at least 5 hr depth, and these long integrations allow us to pick out more lines:

LIVERMORE, SF, IN PREP

FROM THE GROUND: AN EW-LIMITED SURVEY OF LYMAN ALPHA EMISSION AT $5.5<z<8.2$

Will constrain EW < 15 (5) A for 200 (30) J < 27 (26) galaxies

FROM SPACE: HST.GRISMS

The HST grisms are an untapped resource for spectroscopic studies of $z>6$ galaxies.

The exquisite sensitivity can allow spectroscopic confirmations from the break, with our without a line.

FROM SPACE: HST.GRISMS

How can we make progress?

Go deep: Lyman alpha emission is clearly faint. by going deep, we can detect lyman breaks spectroscopically at $z>7$ (as well as faint Lyman alpha lines).

Faint Infrared Grism Survey (FIGS; PI Malhotra; Co-I Finkelstein)

Go wide: A patchy reionization process should result in the attenuation of Lyman alpha from neutral regions, but not from ionized regions. This provides a simple test: do you see high EW LAEs? They are rare, so you need to go wide.

CANDELS Lya Emission at Reionization (CLEAR; PI Papovich; Co-I Finkelstein)

THE FUTURE

Current surveys can really only hope to detect Ly α emission from bright ($\mathrm{J}<27$ galaxies), and even then, we have maxed out (more or less) with 10 m -class ground-based telescopes.

JWST will have the capability to explore these lines to somewhat fainter flux levels.

- At best, a factor of ~ 4 fainter in an ultradeep (30 hr) survey. Likely not nearly enough to detect Lya from faint galaxies at $\mathrm{z}>7$.
- And this only over a small field, and for a <10 year lifetime.

The future is with the GSMTs, and future very large aperture space missions.

- For example, the GMT will have a sensitivity at least as good as JWST between night sky lines. This, coupled with a wide field of view, will create a powerful reionization machine.
- ATLAST can do even better - by being above the atmosphere, we will be able to access Lya over the full redshift range for distant galaxies, with no night sky lines to block us.
- With no lines, lower resolution can be used to achieve even higher sensitivities, allowing detection of Ly α for the newly discovered faint galaxies from JWST.

CONCLUSIONS

We have made significant progress over the past few years understanding the high-redshift universe.

THREE THINGS WE'VE LEARNED

OBSERVABLE GALAXIES AT Z=7 ARE NOT METAL FREE, EVEN THE FAINT ONES.

GALAXIES LIKELY REIONIZED THE UNIVERSE BY Z=6

LYMAN ALPHA SURVEYS IMPLY A RAPIDLY RISING NEUTRAL FRACTION AT Z > 6.5

THREE THINGS WE DON'T KNOW

WHEN DID METALS FIRST FORM, AND ARE THERE METAL-FREE POPULATIONS AT Z < 10?

CAN WE ACCOUNT FOR ALL THE NEEDED IONIZING PHOTONS?

WHAT IS THE TEMPORAL AND SPATIAL EVOLUTION OF REIONIZATION, AND CAN LYA EMISSION TELL US?

[^0]: PAARDEKOOPER+15

