The Ultraviolet View of Protoplanetary Disks: from Hubble To LUVOIR

Kevin France University of Colorado LUVOIR Web Seminar – August 10th 2016

Outline

- 1. Circumstellar gas and dust are the building blocks of planetary systems. New molecular disk diagnostics probed using HST-COS
- 2. Structure, evolution, and composition of molecular gas at planetforming radii (r < 10 AU) in protoplanetary environments

3. The future: Statistical surveys, absorption line spectroscopy towards nearly edge-on disks. Need more effective area, more field-of-view, more spectral resolution...

4. The CHISL spectrograph concept: high-resolution and multi-object FUV spectroscopy with LUVOIR

A. Roberge et al. 2009 – Astro2010 White Paper

A. Roberge et al. 2009 – Astro2010 White Paper

A. Roberge et al. 2009 – Astro2010

Gas & Dust Disk Structure and Evolution

Muto et al. 2012, Subaru/HiCIAO Garufi et al. 2013 VLT/NACO

Dust at *r* < 10 AU

Hernandez+ 2007 Wyatt, ARAA, 2008 Dust disks are observed to clear between ~ 1 – 10 Myr

"Primordial" \rightarrow "Debris"

Dust and Gas at *r* < 10 AU

13 μm optical depth (Dodson-Robinson & Salyk 2011) Dust disks clear between $\sim 1 - 10$ Myr

"Primordial" \rightarrow "Transitional"? \rightarrow "Debris"

(multi-)Planetary systems
 (w/Magnetorotational instability?)

Dong & Dawson 2016 Dodson-Robinson & Salyk 2011 Chiang & Murray-Clay 2007

• UV + X-ray photoevaporation

Alexander et al. 2006 Alexander & Armitage 2007 Gorti & Hollenbach 2009 Alexander et al. PPVI 2014

Gas at *r* < 10 AU

Our definition of inner disk evolution is *mostly* driven by dust characteristics

Does dust content = gas content?

Indirect Gas Observations at *r* < 10 AU

Accretion indicates that gas depletes on comparable timescales: ~ 2.5 Myr*

Fedele+, 2010

***T**_{dust} ~ 4 – 6 Myr @ 24 μm ; Ribas et al. (2014)

Molecules at *r* < 10 AU

Salyk et al. 2009, Brown et al. 2013, Banzatti & Pontoppidan 2015

Collisionally and photo-excited CO disks remain at $r \le 1$ AU* in systems older than 5 Myr with evolved inner dust disks

Muto et al. 2012, Subaru/HiCIAO Garufi et al. 2013 VLT/NACO

CO, H₂O & organics

Warm, Inner disk origin:

• R_{mol} < 3 AU

Mandell et al. 2012

Molecules at *r* < 10 AU

- H₂ makes up > 99% of the molecular gas mass in protoplanetary disks
- Very hard from the ground [may be done with JWST(?)]

Molecules at *r* < 10 AU

- H₂ makes up > 99% of the molecular gas mass in protoplanetary disks
 Very hard from the ground
 - [may be done with JWST(?)]
 - H₂ emission lines from warm molecular disk surface
 - Molecular absorption lines from deeper in the disk on sightlines to accreting protostar

UV-H₂ and UV-CO photoexcited H₂ & CO

The electronic band systems of H₂ have transition probabilities ~ 10¹⁵⁻¹⁸ times greater than near- and mid-IR rovibrational transitions

UV-H₂ and UV-CO photoexcited H₂ & CO

The electronic band systems of H₂ have transition probabilities ~ 10¹⁵⁻¹⁸ times greater than near- and mid-IR rovibrational transitions

HST-Cosmic Origins Spectrograph Protoplanetary Disk Program

- Greg Herczeg KIAA/Peking
- Eric Schindhelm* now SwRI
- Matthew McJunkin* CU
- Keri Hoadley* CU
 - Sample of ~50 young stars (Class II and III protostars)
 - ~80% with active accretion (CTTS)
 - ~20% w/o accretion (WTTS)

Also starring: Herve Abgrall, David Ardila, Joanna Brown, Tom Bethell, Eric Burgh,

Eric Burgh, Jim Green, Graham Harper, Laura Ingleby*, Jeff Linsky, Evelyne Roueff, Fred Walter,

Richard Alexander Alex Brown Ted Bergin Nuria Calvet Suzan Edwards Scott Gregory Lynne Hillenbrand Chris Johns-Krull Christian Schneider Jeff Valenti Hao Yang

Cosmic Origins Spectrograph: 10 – 50 times sensitivity increase for medium-res ($R \approx 20,000$) spectroscopy

STS-125 / Atlantis Servicing Mission 4

3125E009194

COS Disk Program

Wavelength (Å)

(France et al. 2012a; Green et al. 2012)

COS Disk Program

(France et al. 2012a; Green et al. 2012)

H2&CO

EMISSION SPECTRA LYa - PUMPED FLUORESCENCE

France et al. (2012b)

Inner Disk Dust

Every actively accreting star shows H₂ emission excited by strong Lyα illumination (100% of CTTS, 0% of WTTS)

France et al. (2012b); also Ingleby et al. (2011a)

Photoexcitation and Radiative Transfer Modeling of Lyα Fluorescence

Simultaneously fit emission line flux and profiles from 12 H₂ lines

Flux

H₂ and CO emission in a single observation Photoexcited CO observed in UV disk spectra for the first time Thermal and kinematic evidence for separate populations

Dullemond & Monnier 2010

Molecular emission from the Inner Disk

Dullemond & Monnier 2010

(inspirational credit: G. Kriss, STScI)

Composition of Protoplanetary Disks: H₂ and CO Absorption Spectroscopy

 Direct line-of-sight absorption measurements could allow us to probe H₂ and CO in same, warm (~300 K) parcels of disk gas, set a better basis for molecular abundances and total disk mass in these regions.

H₂ and CO Absorption Spectroscopy

Warm CO, 200 - 500K

France et al. (2011b, 2012a); McJunkin et al. (2013)

Warm CO and H₂ observed in UV spectra of low-mass disk for the first time

H₂ and CO Absorption Spectroscopy

Developed new HST spectroscopic mode for medium-resolution observations at $1070 \le \lambda \le 1130$ Å

> PI – S. Penton (GO 12505) K. France S. Osterman

Warm H₂ In Protoplanetary Systems (WH₂IPS)

Cycle 20 GO12876, France

H₂ and CO Absorption Spectroscopy

WH₂IPS

(Warm H₂ In Protoplanetary Systems)

Warm H₂, 400K observed against FUV continuum in T Tauri Stars for the first time

Direct Abundances
 N(CO)/N(H2) ~ 1.6 × 10⁻⁴

France et al. (2014b)

• Additional 'quasi-continuous' emission feature quantified

France et al. (in prep)

- "1600Å Bump" Measurement and Correlations
- Correlated with $Ly\alpha$ and other accretion tracers

France et al. (in prep)

- "1600Å Bump" mechanism: H₂O + Lyα -> H₂⁺ + O (with P~10%)
 H₂⁺ + Lyα -> observed continuum spectra
- Electron-impact does not fit, Lyα-pumped H₂O fragments do

"1600Å Bump" mechanism: H₂O + Lyα -> H₂⁺ + O

H₂^{*} + Lyα -> observed continuum spectra

• Electron-impact does not fit, Lyα-pumped H₂O fragments do

Summary: 1978 - 2016

 HST-COS observations have enabled statistical studies of both H₂ and CO in the warm molecular atmospheres of protoplanetary disks for the first time.

2) H₂ fluorescence traces 0.1 – 3 AU (to 10 AU in some transitional disks) while CO fluorescence traces 2 – 10 AU. H₂ disk inner radii increase with dust dissipation and declining mass accretion rate.

3) CO and H₂ absorption line spectroscopy through inclined disks has revealed CO/H₂ ratios ~10⁻⁴, suggesting that little CO chemical processing occurs in the first 2 Myr. H₂O dissociation at ~few AU is the most likely explanation for the UV molecular continuum in PPD spectra.

WHERE DO WE GO FROM HERE?

Large UV/Optical/IR Surveyor: Aperture and Instruments

To take the next step towards using UV spectroscopy to characterize the structure and composition of planet-forming disks at r < 10 AU, we need higher sensitivities combined with multi-plexed spectroscopy (e.g., a UV multi-object spectrograph or IFU).

A notional two channel instrument would Combine High-resolution and Imaging Spectroscopy:

1) High-resolution (echelle) point source spectrograph

 Multi-object imaging spectrograph, medium- and lowresolution spectral modes.

LUVOIR: Characterizing the Exoplanet "Circle of Life"

Composition of planet forming region, connection to eventual bulk composition of exoplanets and their atmospheres.

LUVOIR: Characterizing the Exoplanet "Circle of Life"

Composition of planet forming region, connection to eventual bulk composition of exoplanets and their atmospheres.

 High sensitivity + high-resolution far-UV absorption line spectroscopy of CO, H₂, and H₂O enable quantitative compositional analysis of planetforming disks

 Multi-object + high-sensitivity enables statistical surveys of inclination angle and ages

Photoevaporative wind

h

Multi-object observations

Complementarity with other science instruments for disk and protoplanet science

Composition of planet forming region, connection to bulk composition of protoplanets, exoplanets, and their atmospheres.

The <u>Combined High-resolution and</u> <u>Imaging Spectrograph for the</u> <u>LUVOIR Surveyor (CHISL)</u>

(with Brian Fleming, Keri Hoadley)

NOTIONAL LUVOIR INSTRUMENT SUITE

First Generation Science Instruments (*to be defined by STDTs, strictly my own interpretation):

- Coronagraph to detect and characterize (potentially inhabited) exoplanets (10⁻¹⁰ contrast ratio – *discovery*, feeding an R > 70 Vis/NIR spectrometer - *characterization*)
- 2) "Wide field" imager (6' x 6'; V = 32 in 1 hr)
- 3) UV spectrograph (multi-object over > 1' x 1' FOV at medium res [R > 25,000]; high-res capability [$R \ge 10^5$])

NOTIONAL LUVOIR INSTRUMENT SUITE

First Generation Science Instruments (*to be defined by STDTs, strictly my own interpretation):

 Coronagraph to detect and exoplanets (10⁻¹⁰ contrast r Vis/NIR spectrometer - cha The Combined Highresolution and Imaging Spectrograph for the LUVOIR surveyor (CHISL)

ed)

- 2) "Wide field" imager (6' x 6')
- UV spectrograph (multi-object over > 1' x 1' FOV at medium res [R > 25,000]; high-res capability [R ≥ 10⁵])

A two channel instrument :

- 1) High-resolution (echelle) point source spectrograph
- 2) Multi-object imaging spectrograph, medium- and lowresolution spectral modes.

- Optical Telescope Assembly \rightarrow collimator
- TBD -- echelle grating*
- Holographically ruled cross-dispersing/focusing grating

<u>**NEED</u></u>: stable advanced coatings (reflectivity \ge 85\% at \lambda > 1000 Å, large-format detector array (~200mm x 200mm)</u>**

NEED: stable advanced coatings, large-format detector arrays (~200mm x 200mm x 2), UV MSAs

Comparison with HST-STIS

Instrument Parameter	STIS G140M	CHISL
		(Imaging
		Modes)
Spectral Resolving Power	10,000	16,000 – 40,000
Total Spectral Bandpass	1140 – 1740 Å	1000–2000 Å
Spectral Bandpass per Exposure	50 Å	450–1000 Å
Number of Exposures to	12	1 (Low Res)
Cover Spectral Bandpass		3 (Med Res)
Imaging Field-of-View	0.2" x 28"	60" x 144"
Spectrograph Throughput	1.2%	11.7%

What can we do with LUVOIR + CHISL?

Deep fields will be produced automatic via parallel observations during coronagraphy

Spectroscopic observations of low/intermediate redshift galaxies and CGM/IGM
What can we do with LUVOIR + CHISL?

Spectroscopic observations of low/intermediate redshift galaxies and CGM/IGM

What can we do with LUVOIR + CHISL?

- 3 microshutter arrays, each 20" x 48" FOV
- 100 x 200 micron slits
- < 0.1" spectral imaging across most of FOV
 - (0.03" 1.0" spectral imaging across full FOV)

What can we do with LUVOIR + CHISL?

What can we do with LUVOIR + CHISL?

R > *15,000* 1000 – 2000 Å spectroscopy of hundreds of objects *simultaneously*.

Background quasars, numerous galactic regions, circumgalactic halo

CHISL Technology – Current Laboratory and Flight Testing

CHISL Technology – Current Laboratory and Flight Testing

Colorado UV Rocket Program

 High-resolution spectroscopy of the local ISM (<u>CHESS</u>); Imaging spectroscopy of nearby galaxies and exoplanet host stars (<u>SISTINE</u>); Ionizing radiation from local OB stars (<u>DEUCE</u>*)

Hardware Development:

High-efficiency UV/visible optical coatings
 Large format, high dynamic range UV detectors
 Diffraction grating technology

Green

Summary: The future

- <u>High-res</u> FUV spectroscopy: gas phase abundances at rocky planet radii. <u>Multi-object</u>: statistical analysis of 0.1 – 10 AU gas structure and evolution from 0.5 – 20 Myr.
- 5) CHISL: high-resolution (echelle) point source spectrograph, $[R \ge 10^5]$

 6) CHISL: Imaging / multi-object spectrograph, medium- and low-resolution spectral modes. multi-object over 1' x 2.4' FOV at medium res [R = 16,000 - 40,000]

Questions?

BREAK

4. CHISL Technology and Fligh

CHISL Technology Development

1) CHESS: (see Keri Hoadley's poster today/tomorrow, 9905-138) high-resolution ($R \approx 10^5$) echelle spectrograph

CHESS Payload

Cross Disperser (HORIBA Jobin-Yvon):

100 x 100 x 30 mm fused silica substrate Holographically-ruled, 351 grooves/mm

4. CHISL Technology – Current Laboratory and Flight Testing

CHISL Technology Development

- CHESS: (see Keri Hoadley's poster today/tomorrow, 9905-138)
- 2) SISTINE: (see Brian Fleming's Talk this afternoon, 9905-9). R
 ≈ 10,000, sub-arcsecond imaging spectrograph, 1000 1600
 Å

Summary – Part 1

1) HST-COS observations have enabled statistical studies of **both H₂ and CO** in the warm molecular atmospheres of protoplanetary disks for the first time.

2) H_2 fluorescence traces 0.1 – 3 AU (to 10 AU in some transitional disks) while CO fluorescence traces 2 – 10 AU. H_2 disk inner radii increase with dust dissipation and declining mass accretion rate.

3) CO and H_2 absorption line spectroscopy through inclined disks has revealed CO/H₂ ratios ~10⁻⁴, suggesting that little CO chemical processing occurs in the first 2 Myr. H₂O dissociation at ~1 AU is the most likely explanation for the UV molecular continuum in PPD spectra.

A. Roberge et al. 2009 – Astro2010 White Paper

Outline

- 1. Circumstellar gas and dust are the building blocks of planetary systems. New molecular disk diagnostics probed using HST-COS
- 2. Structure, evolution, and composition of molecular gas at planetforming radii (r < 10 AU) in protoplanetary environments
 - 3. High-energy (X-ray through UV) stellar irradiance regulates chemistry and evolution of potentially habitable planets first panchromatic survey of M and K dwarf host stars (MUSCLES)
- Quantifying the high-energy radiation environment, formation of "biosignature" species in Earth-like atmospheres, large UV/X-ray flares on optically inactive stars

The Energetic Radiation Environment in the Habitable Zones Around Low-Mass Exoplanet Host Stars

also starring: Tom Ayres – CU, Alex Brown – CU, Juan Fontenla - NWRA Cynthia Froning – Texas, Suzanne Hawley – UW, Lisa Kaltenegger – Harvard/Cornell, Jim Kasting – Penn State Jeff Linsky- CU, Pablo Mauas – Arg, Yamila Miguel - MPIA Aki Roberge – NASA/GSFC, Sarah Rugheimer – Harvard/St. Andrews John Stocke – CU, Feng Tian – LASP/Tsinghua, Mariela Vieytes - Arg Lucianne Walkowicz – Princeton/Adler

Heating and Chemistry of Planetary Atmospheres

Heating and Chemistry of Planetary Atmospheres

Heating and Chemistry of Planetary Atmospheres

Exoplanet Atmospheres: Exo-Earths

Habitable planet candidates exist today

Segura+, AsBio, 2005

•The EUV+FUV+NUV radiation fields of their host stars control the atmospheric heating/ stability and photochemical structure of their atmospheres – including formation of biomarkers (e.g., O₂, O₃, CO₂, CH₄)

• However, we have few constraints on the

high-energy irradiance from "typical" (optically inactive) M and K dwarf planet hosts, neither observational nor theoretical

 Modeling and interpretation of biomarkers require realistic inputs

Observational Program

Measurements of the **U**ltraviolet **S**pectral **C**haracteristics of Low-mass **E**xoplanetary **S**ystems

PI – France. CU graduate students Allison Youngblood and Parke Loyd

(CU student Sarah LeVine)

Observational & Modeling Program • Optical & NIR - North: APO, LCOGT, South: El Leoncito, VLT •FUV (w/ Ly α) & NUV • Hubble Space Telescope, Cycle 22 Treasury • LUV • Far-Ultraviolet Spectroscopic Explorer + models • EUV Calculation based on new solar/stellar models and observed FUV line emission + EUVE X-ray = 0.5 - 10 nm•X-ray EUV = 10 - 90 nm•Chandra, XMM-Newton, Swift LUV = 91 - 116 nmFUV = 117 - 170 nmPI – France NUV = 171 - 310 nm

MUSCLES

MUSCLES Treasury Survey: 60% of K and M dwarf exoplanet hosts at d < 15 pc.

What is the energetic radiation environment in the habitable zones of low-mass exoplanetary systems?
Flares and activity on typical (`inactive') K & M

dwarfs host stars

 Impact on atmospheric photochemistry and the production of molecular tracers

MUSCLES: "typical" M dwarfs

France et al. (ApJ-2016)

Compiling X-ray \rightarrow NIR Stellar Irradiances

M dwarf Ly α

• Project MUSCLES: Ly α Reconstruction

EUV Estimates: F(EUV) / F(Ly α)

Youngblood et al. 2016 Linsky et al. 2014

5 Å – 5 μm Spectral Irradiance Database

https://archive.stsci.edu/prepds/muscles/

		23
MUSCLES - Measu	urements × 🔚 Hourly Weather Forecast f × +	
← ▲ https://archive.stsci.edu/prepds/muscles/] C Nore Grant Funding? → 🟠 🖻 💟 🕹 🏠 🧐	=
🔊 Most Visited 👰 HST Program Status 👰 ETC 🍁 AstroMtg2016 💝 Drop	pbox - Log in 🚯 LASP Travel 📴 LASP_WebMail	
Barbara A.		
MIKÜLSKI ARCHIVE 🖗 S	PACE TELESCOPES	
MAST STSrl Tools - Mission Search - Search Website		
About MAST Getting Started		
As of Assil 12, the exclusion is non-united the CTC-I Simple Size On	(222) identity and an Talakash an your account click here. For	
more information about how accounts were transitioned click here	(SSO) identity manager. To check on your account click <u>here</u> . For	
Measurements of the Ultra	violet Spectral Characteristics	
of Low-mass Exoplane	etary Systems (MUSCLES)	
- Pl: Kovin Ev	ranco (Colorado)	
Loyd/France et al.	2016, xxxx, xxxx, xxxx	
See also:		
MUSCLES Paper I - Motivation and Overview: France et MUSCLES Paper II - Intrinsic Lyman Alpha and Extrem	<u>al. 2016, <i>in prep</i></u> e Ultraviolet Spectra of K and M Dwarfs with Exoplanets;	
Youngblood et al. 2016, in prep		
Introduction Data Products	Data Access README (TXT) (PDE)	
Introduction		
MUSCLES is a spectral survey of 11 low-mass, planet-hosting		
stars, 7 M and 4 K dwarfs. The spectra cover wavelengths from 5	Chandra/XMM/APEC EUV HST/Ly α Phoenix Model HD97658 Composite, T_{eff} = 5155K	
A to 5.5 µm, with emphasis on high-energy radiation. Data	10"	
sources for the various regions of the spectra are.	10-2	
 X-rays: Chandra/XMM-Newton and APEC models (Smith) 		
et al 2001 Ap./ 556 91)		
et al. 2001, <i>ApJ</i> , 556, 91) • EUV: Empirical scaling relation based on Lya flux (<u>Linsky</u>		
et al. 2001, ApJ, 556, 91) • EUV: Empirical scaling relation based on Lya flux (<u>Linsky</u> et al. 2014, ApJ, 780, 61) • Lyap Reconstructed from model fit to line winds	10 ¹⁰ 10 ⁴	
 et al. 2001, ApJ, 556, 91) EUV: Empirical scaling relation based on Lya flux (Linsky et al. 2014, ApJ, 780, 61) Lya: Reconstructed from model fit to line wings (Youngblood et al., 2016, in prep) 	10.4 10.4	
 et al. 2001, ApJ, 556, 91) EUV: Empirical scaling relation based on Lya flux (Linsky et al. 2014, ApJ, 780, 61) Lya: Reconstructed from model fit to line wings (Youngblood et al., 2016, in prep) FUV - blue visible:: HST COS and STIS 	10 ⁻⁹ 10 ⁻⁴ 10 ⁻⁴ 10 ⁻⁴	

M dwarf FUV and NUV vs. Solar Project MUSCLES: GJ 832, UV Spectrum

France et al. (ApJL-2012c, ApJ-2016)

FUV/NUV ratio

FUV/NUV – Atmospheric Oxygen Chemistry Segura+, AsBio, 2010 Tian+, E&PSL, 2014

Sun -- FUV/NUV ~ 10 -3

 Potential abiotic production of O₂ and O₃ leading to "biosignatures imposters"

F(FUV), F(XUV) in HZ $\approx 10 - 70 \text{ erg cm}^{-2} \text{ s}^{-1}$

False Positive Biosignatures around M dwarfs Segura+, AsBio, 2005; Hu et al. 2012 Tian+, E&PSL, 2014; Gao et al. 2015 Domagal-Goldman+ 2014, Harman+ 2015

Rivera et al. 2010 Tian et al. 2014 Harman et al. 2015

Potential Biomarkers on Exo-Earths

Segura et al. 2007)

Potential Biomarkers on Exo-Earths

Detectable Levels of O₂ and O₃

without an active biosphere

(Kasting & Catling 2003; Segura et al. 2007)
Atmospheric Impacts and Potential Biomarkers

•Older work: Segura et al. 2005, 2010; Hu et al. 2012

Domagal-Goldman et al. (2014); possible abiotic O₃
 Rugheimer et al. (2015); FUV/ NUV irradiances from active/inactive stars vs. stellar models and Earth-like planet spectra

UV variability in "inactive" M dwarf exoplanet host stars

France et al. (ApJ-2016) Loyd et al. (ApJ-2016 submitted)

MUSCLES Treasury, July 07 2015

Velocity Profiles in M dwarf Flares

Loyd et al. (2016 – in prep)

UV flare energy/duration distribution

• SilV (*T_{form} ≈ 40,000 - 70,000 K*) Flare distribution

Earth-mass Planets around M and K dwarfs: The Production of (and eventual detection of) "Biomarker" Gases

• Exo-Earth transits: they have extended atomic atmospheres too...

Kevin France

University of Colorado at Boulder

Earth-mass Planets around M and K dwarfs: The Production of (and eventual detection of) <u>"Biomarker"</u> Gases

- (R_{planet}/R_*) for O₂, O₃, CO, CO₂, H₂, and H all peak in the UV, 100 400 nm.
- O₃ peak at 250 nm, O₂ peak at 160nm: habitable planets around F and A stars. (start discovery now)
- <u>NEED</u>: 8+ m primary, facility-class UV spectrograph, large photon-counting UV detectors

University of Colorado at Boulder

Summary

Summary – Part 2

1) **MUSCLES**: First panchromatic survey of the energetic radiation environment around M dwarf exoplanet host stars. High-level data products available on MAST for modeling community.

2) FUV/NUV ~ 0.2 -1 for M dwarfs, important for atmospheric chemistry and the production of possible false-positive "biomarkers"

3) FUV and X-ray flares (50 - 10000% increases on $10^2 - 10^3$ second timescales) are present on \geq half of **optically inactive** M dwarf exoplanet host stars observed to date. Impacts on atmospheres is work in progress.

MUSCLES

Table 1: MUSCLES Treasury Survey – Target List Distance Type Exoplanet Mass Semi-major Axis HSTStar X-ray X-ray $M \sin i (M_{Jup})$ T_{exp} (orbits) Mode T_{exp} (ks) (pc)(AU) GJ 1214 CXO-GO15 13.0M60.0200.014315[30]GJ 876 4.7M41.935, 0.61, 0.208, 0.130, 10Chandra 20 + 100.018, 0.039 0.0208, 0.0208 GJ 581 6.3M3 CXO-G015 0.050, 0.017, 0.041, 0.073,11 [50]0.019. 0.006 0.218, 0.029GJ 436 10.3M2.50.0730.028713Chandra 20 + 10GJ 176 M2.50.026Chandra 9.40.06614 20 + 10GJ 667C 6.9M1.50.018, 0.0140.049,0.123 Chandra 11 20 + 10GJ 832 4.9M10.643.410 XMM10 HD 85512 11.2K60.011 0.26CXO-GO [40]8 HD 40307 12.9K2.5 CXO-GO 0.013, 0.021,0.047, 0.080, 8 [50]0.030, 0.011, 0.132, 0.189,0.016, 0.0220.247, 0.600 ϵ Eri K2XMM3.21.1 - 1.553.48 10CXO-GO HD 97658 21.1K10.0200.080[50]9 GJ 1061 M5 $\mathbf{2}$ 3.7. $\mathbf{2}$ GJ 628 M44.3. HD 173739 3.6M3 $\mathbf{2}$ GJ 887 M2 $\mathbf{2}$ 3.3.

M dwarf radiation fields: IUE is insufficient

No MUSCLES? No problem.

•Correlations between broadband FUV and XUV fluxes and observed line fluxes provide first order irradiance estimates in the absence of complete observations

France et al. (ApJ-2016 astro-ph)

EUVE M dwarfs: F(EUV) / F(Ly α **)**

<u>M-dwarf EUV calculations:</u>

Based on *EUVE* data, M dwarf F(EUV)/F(Lyα) ratios agree with solar model, modulo an empirically constrained offset, e.g.,

 $\log (F(EUV)/F(Ly\alpha))_{M} =$

 $\log (F(EUV)/F(Ly\alpha))_{\odot} + \Delta F$

ΔF(10 – 20 nm)= +0.37 [16%]

ΔF(20 – 30 nm)= -0.01 [24%]

Youngblood et al. 2016 Linsky et al. 2014

ΔF(30 – 40 nm)= -0.03 [18%]

UV variability in other exoplanet host stars

• K-dwarf ε Eri, FUV Flare. L_{FUV} increase ~ 3

HST-COS, Feb 02 2015

UV variability in G, K, and M stars

•Stochastic Fluctuations = "excess" noise beyond photometric uncertainties, after removing flares.

• Likely microflares or smaller reconnection events

Loyd & France, ApJS 2014

UV variability in G, K, and M stars

 Stochastic Fluctuations = "excess" noise beyond photometric uncertainties, likely microflaring events

Summary

1) Despite 2 – 3 Myr timescale for the end of accretion, many 1 - 10 Myr protoplanetary disks (CTTS + Herbig Stars) display a rich molecular layer at planet-forming radii (0.1 - 10 AU)

2) Fundamental band CO studies ($\lambda \sim 4.7 \mu m$) provide the most detailed constraints on the temperature and kinematics of the 0.1 – 1.0 AU inner disk, including disk winds

3) H₂O, OH, and organic molecules are common inside 3 AU

4) UV spectroscopy is a promising technique for the characterization of the photoexcitation of the inner disk surface (0.1 - 10 AU). Simultaneous coverage of CO and H₂ set a basis for gas-phase abundance and disk structure studies.

Molecular Gas in the 0.1 – 10 AU Circumstellar Environments Around Young Stars

Mahalo

• COS enables robust FUV continuum characterization for the first time

• COS enables robust FUV continuum characterization for the first time

- "1600Å Bump" Measurement and Correlations
- 10 30% of Ly α pumped H₂ luminosity(!), must tie in to Ly α

• "1600Å Bump" mechanism: $H_2O + Lya \rightarrow H_2^{\dagger} + O$

H₂^{*} + Lyα -> observed line and continuum spectra

• Electron-impact does not fit, Lyα-pumped H₂O fragments do

Molecules at *r* < 10 AU

Salyk et al. 2009

$\lambda \sim 4 - 5 \ \mu m CO$ fundamental emission

High-resolution mid-IR ground-based spectrographs:
1) NIRSPEC (*R* ~ 25,000)
2) CRIRES (*R* ~ 90,000)

CO Rovibrational Emission

Bast et al. 2011

- Keplerian Disk (requires inclination & M_{*})
 - Disk + Wind (spectroastrometry desirable)

Inferred Spatial Distributions:1) Line Profiles & Astrometry

2) Temperature Distributions

CO Rovibrational Emission

- Rotational Excitation
 Diagrams
 (optical depth effects)
- Isotopic Fractions and Vibrational Excitation (UV radiation field, grain opacities)

T_{rot} (IR-CO) = 300 – 1500K (warm molecular layer near/ interior to 1 AU)

Inferred Spatial Distributions:1) Line Profiles & Astrometry2) Temperature Distributions

Najita et al. 2003 Salyk et al. 2007-2011 Brown et al. 2013

CO Rovibrational Emission

Pontoppidan et al. 2011

Molecules in Protoplanetary Disks: Ultraviolet Emission from the Inner Disk

- UV-H₂: Most targets dominated by single, symmetric
 H₂ line profile at the stellar radial velocity:
 - 1. Disk surface origin, likely wind component
 - 2. $T_{rot}(UV-H_2) = 2500 \pm 1000 \text{ K}$
 - **3.** $R_{UV-H2} = 0.1 3 \text{ AU}$; $M_{H2}(2500 \text{ K}) \sim 10^{-6} 10^{-4} \text{ M}_{\oplus}$
- UV-CO: Narrower lines, no evidence for broad component
 - 1. Disk surface origin
 - 2. $T_{rot}(UV-CO) = 400 \pm 300 \text{ K}$
 - **3.** $R_{UV-CO} = 2.0 10 \text{ AU}$; $M_{H2}(500\text{ K}) \sim 10^{-2} 10^{-1} \text{ M}_{\oplus}$

Molecules in the Inner Disk: Ultraviolet-Infrared Relationship

France et al. (2012b), Salyk et al. (2011), Bast et al. (2011), Brown et al. (2013)

H₂O & organics

Warm, Inner disk origin

Carr & Najita et al. 2008

			Ŭ	
	Molecule	<i>Т</i> (К)	<i>N</i> (10 ¹⁶ cm ⁻²)	<i>R</i> * (AU)
	H ₂ O	575 ± 50	65 ± 24	2.1 ± 0.1
	ОН	525 ± 50	8.1 ± 5.2	2.2 ± 0.1
	HCN	650 ± 100	6.5 ± 3.3	0.60 ± 0.05
	C_2H_2	650 ± 150	0.81 ± 0.32	0.60†
	CO2	350 ± 100	0.2 –13	1.2 ± 0.2
	C0	900 ± 100	49 ± 16	0.7 ± 0.1

UV-H₂ and UV-CO

CO Fluorescence

$UV-H_2$ and UV-CO

Strong detections of photo-excited CO in ~ 60% of our gas-rich disk targets

France et al. (2011b)

UV variability in G, K, and M stars

• UV Flare statistics

Loyd & France, ApJS 2014
Hubble's Ultraviolet View of Protoplanetary Disks and Exoplanetary Environments

Kevin France

University of Colorado at Boulder

University of St. Andrews – March 4th 2016

