Understanding the Universe Summary Lecture

Volker Beckmann

Joint Center for Astrophysics, University of Maryland, Baltimore County & NASA Goddard Space Flight Center, Astrophysics Science Division UMBC, December 12, 2006

Overview

• What did we learn? • Dark night sky • distances in the Universe Hubble relation Curved space Newton vs. Einstein : General Relativity • metrics solving the EFE: Minkowski and **Robertson-Walker metric** Solving the Einstein Field Equation for an expanding/contracting Universe: the **Friedmann equation**

Friedmann equation Fluid equation Acceleration equation Equation of state Evolution in a single/multiple component Universe Cosmic microwave background Nucleosynthesis Inflation

Homogeneity vs Isotropy

Homogeneous, isotropic

Inhomogeneous, isotropic

Homogeneous, anisotropic

The veloci distance relation for galaxies for by Edwin Hubble.

Graphic: Edv

Expansion in a steady state Universe

Expansion in a non-steady-state Universe

The equivalent principle: You cannot distinguish whether you are in an accelerated system or in a gravitational field

Newton vs. Einstein

Newton:

- mass tells gravity how to exert a force, force tells mass how to accelerate (F = m a) Einstein:

 mass-energy (E=mc²) tells space time how to curve, curved space-tim tells mass-energy how to move

The effect of curvature

Negatively curved universe

A glimpse at Einstein's field equation

$$R_{ab} - \frac{1}{2} R g_{ab} = \frac{8\pi G}{c^4} T_{ab}.$$

Left side (describes the action of gravity through the curvature of space time $R_{ab} = Ricci$ curvature tensor (4x4, 10 independent)

- R = Ricci scalar (each point on a Riemannian manifold assigned a real num describing intrinsic curvature)
- g_{ab} = metric tensor (~ gravitational field)
- Solutions to the EFE are called "metrics of spacetime" ("metrics") In flat space time for example we get the Minkowski metric:

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2}$$

$$ds^{2} = -dt^{2} + dr^{2} + r^{2}d\Omega^{2}$$

$$\eta = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

The Minkowski metric (a solution to the Einstein field equation for flat space time)

$$ds^{2} = -c^{2} dt^{2} + dL^{2} = -c^{2} dt^{2} + dr^{2} + r^{2} d\Omega^{2}$$

 $ds^2 = 0$ represents the path of light (*null geodes*

assume movement along r only : $c^2 dt^2 = dr^2$

or

dr / dt = + - c

Robertson-Walker metric Howard Percy Robertson (1903-1961) & Arthur Geoffrey Walker (1909-2001)

$$R_{ab} - \frac{1}{2}Rg_{ab} = \frac{8\pi G}{c^4}T_{ab}$$

Which metric solves the Einstein equation if there is curvature? Robertson-Walker metric is an exact solution for General Relativity

$$ds^{2} = c^{2}dt^{2} - a(t)^{2}[dr^{2} + \bar{r}^{2}d\Omega^{2}]$$

$$\int_{\bar{r}}^{R_{C}} \sinh(r/R_{C}), \quad \text{for negative curvature}$$

$$\bar{r} = \begin{cases} R_{C} \sinh(r/R_{C}), & \text{for negative curvature} \\ r, & \text{for zero curvature} \end{cases}$$

 $R_C \sin(r/R_C)$, for positive curvature

- r : comoving distance from observer
- $\underline{\mathbf{r}}$: proper motion distance
- RC : absolute value of the radius of curvature
- homogeneous isotropic expending universe

Fundamental Principles of GR

- general principle of relativity
- principle of general covariance
- inertial motion is geodesic motion
- local Lorentz invariance
- spacetime is curved
- spacetime curvature is created by stress-energy within the spacetime

(1 and 3 result in the equivalent principle)

Friedmann Equation Aleksander Friedmann (1888-1925)

Friedmann equation

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\epsilon - \frac{\kappa c^2}{R_0^2 a^2}$$

Friedmann Equation

Critical density: $\epsilon_c(t) \equiv \frac{3c^2}{8\pi G} \cdot H(t)^2$

Critical density (today): $\epsilon_{c,0} = \frac{3c^2}{8\pi G} \cdot H_0^2 = (8.3 \pm 1.7) \times 10^{-10} \,\mathrm{J \, m^{-3}}$ $= 5200 \pm 1000 \,\mathrm{MeV \, m^{-3}}$

$$\begin{aligned} \rho_{c,0} &\equiv \frac{\epsilon_{c,0}}{c^2} = (0.2 \pm 1.8) \times 10^{-27} \, \text{kg m}^{-3} \\ &= (1.4 \pm 0.3) \times 10^{11} \, \text{M}_{\odot} \, \text{Mpc}^{-3} \end{aligned}$$

Friedmann equation with cosmological constant

$$H^2 \,=\, \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi\,G}{3c^2}\epsilon - \frac{\kappa\,c^2}{R_0^2\,a^2} + \frac{\Lambda}{3}$$

Fluid equation (stays the same) :

$$\dot{\epsilon} + 3\frac{\dot{a}}{a}(\epsilon + P) = 0$$

Equation of state

Acceleration equation:

$$\frac{G}{a} = -\frac{4\pi G}{3c^2}(\epsilon + 3P) + \frac{\Lambda}{3}$$

 $P = \omega \epsilon$

Key question: what is the average energy density of virtual particles in the universe?

Look for the lecture about dark energy on the course webpage (under "Literature"). Fast connection required (170 MByte; 45 minutes).

Density parameter Ω and curvature

Friedmann equation:

$$\dot{a}^2 = \frac{8\pi G}{3c^2} \sum_{\omega} \epsilon_{w,0} a^{-1-3\omega} - \frac{\kappa c^2}{R_0^2}$$
Friedmann equation (empty universe):

$$\dot{a}^2 = -\frac{\kappa c^2}{R_0^2}$$
Friedmann equation (flat, single-component):

$$\dot{a}^{2} = \frac{8\pi G \epsilon_{0}}{3 c^{2}} a^{-1-3\omega}$$
Flat, single composition
 $H_{0} \stackrel{'}{\equiv} \left(\frac{\dot{a}}{a}\right)_{t=t_{0}} = \frac{2}{3(1+\omega)} t_{0}^{-1}$
 $t_{0} = \frac{2}{3(1+\omega)} H_{0}^{-1}$

The first part of the lecture

- Universe is expanding (Hubble relation)
- Newton's not enough: Einstein's idea about space-time
- General relativity for curved space-time
- Four equations to describe the expanding/contracting universe

The second part of the lecture

- How to model the Universe
- the Friedmann equation as a function of density parameters
- Matter-, radiation-, lambda-, curvatureonly universe
- mixed-component universes
- the important times in history:
- $a_{r,m}$ and $a_{m,\Lambda}$

The second part of the lecture

How to measure the Universe
the Friedmann equation expressed in a Taylor series: H₀ and q₀ (deceleration parameter)
luminosity distance, angular size distance
distance ladder: parallax, Cepheids, SuperNova Type la

 results from the SuperNova measurements

The second part of the lecture

- What is the matter contents of the Universe?
- matter in stars
- matter between stars
- matter in galaxy clusters
- dark matter

Cala factor o(t) in a flat single common ant universe

Universe with matter and curvature only

$$\frac{H^2}{H_0^2} = \frac{\Omega_{r,0}}{a^4} + \frac{\Omega_{m,0}}{a^3} + \Omega_{\Lambda,0} + \frac{1 - \Omega_0}{a^2}$$

$$P=\omega\,\epsilon$$

Density parameter:

$$\Omega(t) \equiv \frac{\epsilon(t)}{\epsilon_c(t)}$$

Curved, matter dominated Universe

Big Chill $(a \propto t)$ Big Chill (a \propto t^{2/3}) **Big Crunch**

Universe with matter, Λ , and curvature (matter + cosmological constant + curvature)

$$\frac{H^2}{H_0^2} = \frac{\Omega_{r,0}}{a^4} + \frac{\Omega_{m,0}}{a^3} + \Omega_{\Lambda,0} + \frac{1 - \Omega_0}{a^2}$$

$$\frac{H^2}{H_0^2} = \frac{\Omega_{m,0}}{a^3} + \frac{1 - \Omega_{m,0} - \Omega_{\Lambda,0}}{a^2} + \Omega_{\Lambda,0}$$

$$\Omega_0 = \Omega_{\mathrm{m},0} + \Omega_{\Lambda,0}$$

Flat Universe with matter and radiation (e.g. at $a \sim a_{rm}$)

$$\frac{H^2}{H_0^2} = \frac{\Omega_{r,0}}{a^4} + \frac{\Omega_{m,0}}{a^3} + \Omega_{\Lambda,0} + \frac{1 - \Omega_0}{a^2}$$

$$\boldsymbol{\Omega}_{0} \;=\; \boldsymbol{\Omega}_{\mathrm{m},0} \;+\; \boldsymbol{\Omega}_{\mathrm{r},0}$$

Describing the real Universe - the "benchmark" model

$$\frac{H^2}{H_0^2} = \frac{\Omega_{r,0}}{a^4} + \frac{\Omega_{m,0}}{a^3} + \Omega_{\Lambda,0} + \frac{1 - \Omega_0}{a^2}$$

 $\Omega_{0} = \Omega_{L} + \Omega_{m,0} + \Omega_{r,0} \\
= 1.02 \pm 0.02 \\
(Spergel et al. 2003, ApJS, 148, 175) _{\Omega_{0}<1}$

The "benchmark" model

photons $\Omega_{\gamma,0}$ neutrinos $\Omega_{\nu,0}$ total radiation $\Omega_{r,0}$ baryonic Ω_{bar} dark matter Ω_{dm} total matter $\Omega_{m,0}$ dark energy $\Omega_{\Lambda,0}$

 $\begin{aligned} \Omega_{\gamma,0} &= 5.0 \times 10^{-5} \\ \Omega_{\nu,0} &= 3.4 \times 10^{-5} \\ \Omega_{r,0} &= 8.4 \times 10^{-5} \\ \Omega_{bary,0} &= 0.04 \\ \Omega_{dm,0} &= 0.26 \\ \Omega_{m,0} &= 0.30 \\ \Omega_{\Lambda,0} &\simeq 0.70 \end{aligned}$

 $\Omega_0 = \Omega_L + \Omega_{m,0} + \Omega_{r,0}$ = 1.02 ± 0.02 (Spergel et al. 2003, ApJS, 148, 175)

"The I Initiana is flat and full of stuff was connect soo"

The "benchmark" model

Important Epochs in our Universe:

Epoch	scale factor	time
radiation-matter	$a_{rm} = 2.8 \times 10^{-4}$	$t_{rm} = 47,000 \mathrm{yr}$
matter-lambda	$a_{m\Lambda} = 0.75$	$t_{m\Lambda} = 9.8 \mathrm{Gyr}$
Now	$a_0 = 1$	$t_0 = 13.5 \mathrm{Gyr}$

"The Universe is flat and full of stuff we cannot see and we are even dominated by dark energy right now"

The "benchmark" model

Some key questions:

- Why, out of all possible combinations, we have $\Omega_0 = \Omega_{\Lambda} + \Omega_{m,0} + \Omega_{r,0} = 1.0$? -Why is $\Omega_{\Lambda} \sim 1$?
- What is the dark matter?
- -What is the dark energy?
- What is the evidence from observations for the benchmark model?

How do we verify our models with observations?

$$H_0 \cdot t = \int_0^a \frac{da}{\sqrt{\Omega_{r,0} \, a^{-2} + \Omega_{m,0} \, a^{-1} + \Omega_{\Lambda,0} \, a^2 + (1 - \Omega_0)}}$$

Hubble Space Telescope Credit: NASA/STS-82

Scale factor as Taylor Series

$$f(x) = f(\alpha) + f'(\alpha)(x - \alpha) + \frac{f''(\alpha)}{2!}$$
$$(x - \alpha)^{2} + \frac{f^{(3)}(\alpha)}{3!}(x - \alpha)^{3} + \dots + \frac{f^{(n)}(\alpha)}{n!}(x - \alpha)^{n} + \dots$$

$$a(t) \simeq 1 + H_0(t - t_0) - \frac{1}{2}q_0H_0^2(t - t_0)^2$$

 $q_0 =$ deceleration parameter

Deceleration parameter q_0

$$a(t) \simeq 1 + H_0(t - t_0) - \frac{1}{2}q_0H_0^2(t - t_0)^2$$

Acceleration equation:

$$\frac{\dot{a}}{a} = -\frac{4\pi G}{3c^2}(\epsilon + 3P)$$

$$-\frac{\dot{a}_0}{a_0H_0^2} = q_0 = \frac{1}{2} \sum_{\omega} \Omega_\omega \left(1 + 3\omega\right)$$

How to measure distance

Measure flux to derive the luminosity distance Measure angular size to derive angular size distance

M101 (Credits: George Jacoby, Bruce Bohannan, Mark Hanna, NOAO)

Luminosity Distance

In a nearly flat universe:

$$d_L \simeq \frac{c}{H_0} z \left[1 + \frac{1-q_0}{2} z \right]$$

How to determine a(t) :

- determine the flux of objects with known luminosity to get luminosity distance
- for nearly flat: $d_L = d_p(t_0) (1+z)$
- measure the redshift
- determine H_0 in the local Universe

 \rightarrow q₀

Angular Diameter Distance $d_A = \text{length} / \delta\Theta = d_L / (1+z)^2$

For nearly flat universe: $d_A = dp(t_0) / (1+z)$

Distance measurements

- Distance ladder:
- measure directly distances in solar system
- nearby stars with parallax (up to 1kpc)
- nearby galaxies with variable stars (Cepheids)
- distant galaxies with Supernovae Type Ia
- ("standard candles") up to redhsift z~2
- see also "literature" on the course webpage

For nearly flat Universe:

 $d_L \simeq \frac{c}{H_0} z \, \left[1 + \frac{1-q_0}{2} z \right]$

 α 1', λ 1 D1 1

The progenitor of a Type Ia supernova

Two normal stars are in a binary pair.

The more massive star becomes a giant...

...which spills gas onto the secondary star, causing it to expand and become engulfed.

The secondary, lighter star and the core of the giant star spiral inward within a common envelope.

The common envelope is ejected, while the separation between the core and the secondary star decreases.

the giant collapses and becomes a white dwarf.

The remaining core of

... causing the companion

The aging companion star starts swelling, spilling

Chandrasekhar limit

Electron degeneracy pressure can support an electron star (White Dwarf) up to a size of ~1.4 solar masses Subrahmanyan Chandrasekhar (1910-1995)

Nobel prize winner

 $M_{Ch} \simeq \frac{3\sqrt{2\pi}}{8} \left(\frac{hc}{2\pi G}\right)^{3/2} \left[\frac{Z}{A} \frac{1}{m_H}\right]^2$

Super Nova Type Ia lightcurves

Corrected lightcurves

Perlmutter et al. 1999

Dark matter can "seen" in rotation curves of galaxies and in velocity dispersion of galaxies in clusters

The third part of the lecture

- Cosmic microwave background
- Nucleosynthesis; the first 3 minutes
- inflation: solving the flatness, horizon, and magnetic monopol problem by inflating the universe exponentially for a very short time starting at $t_i = 10^{-35}$ s

Penzias & Wilson (1965): 3° K background radiation

Bell Telephone Lab in Murray Hill (New Jersey)

The 2.75 °K background as seen by WMAP

Poisson's equation:

 $\nabla^2 \phi = 4\pi \, G \rho$

Credit: NASA/WMAP Science Team

Acoustic Oscillations

Neutron Decay

Neutron decay involves the weak force: small cross section which decreases with time (proportional to 1/t). Thus the neutron fraction freezes out after the universe is 1 second old. The neutron fraction ends up to be ~ 0.15

Illustration: Christine M. Griffin

⁴He is a "dead end" for primordial nucleosynthesis. Helium amounts

Primordial nucleosynthesis is finished after 1000 seconds

Why is the baryon-to-photon fraction $\eta = 5.5 \ 10^{-10}$?

Our Universe model works fine so far, but...

- flatness problem (nearly flat but not totally flat)
- horizon problem (isotropic CMB)
- monopole problem (there are no magnetic monopoles)

Inflation of the Universe

- phase of the Universe with accelerated expansion

Acceleration equation:
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\epsilon + 3P)$$

Alan Guth, MIT (*1947)

Final Exam

- Thursday, 8:00 a.m. 10 a.m. (here)
- show up 5 minutes early
- bring calculator, pen, paper
- no books or other material
- formulas provided on page 4 of exam
- questions are ordered in increasing difficulty

Final exam preparation

- Ryden Chapter 2 11 (incl.)
- look at homework (solutions)
- look at midterm #1 and #2
- check out the resources on the course web page (e.g. paper about benchmark model, videos of lectures)

