# Future Instruments



#### Skoklosters slott

Neil Gehrels NASA-GSFC



**Skokloster Jet Workshop** 

August 31, 2013

# **Space Gamma-Ray Observatories**











Also: RHESSI, Suzaku & AGILE







### **Ground Gamma-Ray Observatories**

![](_page_2_Picture_1.jpeg)

![](_page_2_Picture_2.jpeg)

![](_page_2_Picture_3.jpeg)

### Mrk 421 Campaign

![](_page_3_Figure_1.jpeg)

Abdo+11

corr. authors: Paneque, Finke,, Georganopoulos,, Reimer, Tescaros

### **Photon Interactions**

![](_page_4_Figure_1.jpeg)

# **Telescope Types**

![](_page_5_Figure_1.jpeg)

low energy

medium energy

high energy

e

# **Detector Types**

Scintillators

Solid State Detectors

Pair Trackers

![](_page_6_Figure_4.jpeg)

# **Detector Types**

![](_page_7_Figure_1.jpeg)

### October 28, 2003 Solar Flare

![](_page_8_Figure_1.jpeg)

Kiener+06

![](_page_8_Picture_3.jpeg)

![](_page_8_Figure_4.jpeg)

Ishikawa+ 10

#### 9 Ge Detectors - Launch 2002

![](_page_8_Picture_7.jpeg)

# **Motivations for Future Instruments**

beaming in jetted sources spectral components variability in jetted sources leptonic vs hadronic outflows internal vs external shock models polarization in magnetic outflows origin of short GRBs GRB probes of high-z universe spectra in MeV desert

multiwavelength, long time broad spectral coverage broad spectral coverage multiwavelength during prompt multiwavelength during prompt polarimetry arcsec positions, hard  $\gamma$ -rays soft  $\gamma$ -rays, IR spectroscopy Compton telescope

![](_page_10_Figure_0.jpeg)

# **IKAROS/GAP GRB Polarization**

![](_page_11_Figure_1.jpeg)

Japanese solar sail demo mission 4kg GAP instrument 50 – 300 keV Polarization measured for GRB 100826A 3.5σ detection

20 m solar sail

![](_page_11_Picture_4.jpeg)

![](_page_11_Figure_5.jpeg)

Yonetoku+ 11, 12

# **SVOM** 2018

#### Chinese/French satellite

~300 kg

ECLAIRS coded aperture 4 – 250 keV

GRM 30 keV - 5 MeV

Narrow-field X-rays and optical

Wide-field optical camera

GRB & transient science

![](_page_12_Figure_8.jpeg)

# **Missions in Development**

#### ASTROSAT (2014)

- Indian mission with 5 instruments
- CZT coded aperture  $10-150 \text{ keV} (1000 \text{ cm}^2)$
- Large area PC  $2 80 \text{ keV} (6000 \text{ cm}^2)$
- Scanning sky monitor 2 10 keV

![](_page_13_Figure_6.jpeg)

HXMT

#### HXMT (2016)

- Chinese mission for 2-200 keV all-sky survey
- 18 phoswich detectors,  $6^{\circ} \times 6^{\circ}$  FoV (5000 cm<sup>2</sup>)

![](_page_13_Picture_11.jpeg)

# **Missions in Development**

#### **Astro-H** (2015)

- JAXA / NASA / SRON mission, launch 2014
- Hard and soft X-ray focusing telescopes
- Calorimeter X-ray spectrometer
- Collimated γ-ray instrument 4-600 keV, Si/CdTe

#### Lomonosov / UFFO Pathfinder (2014)

- Konus-like scintillators, 100 GRBs/yr  $2\pi$  sr
- UFFO with coded aperture hard X-rays (200 cm<sup>2</sup>) and rapid-pointing UV telescope (20 cm mirror)

![](_page_14_Figure_9.jpeg)

UFFO Korea / Russia

![](_page_14_Picture_11.jpeg)

#### Lomonosov Spacecraft & Payloads

![](_page_15_Figure_1.jpeg)

# **Proposed Missions**

#### LOFT

- Wide-area X-ray timing instrument (~20 m<sup>2</sup>)
- Wide-Field Monitor with  $\sim$ 3 sr &  $\sim$ 150 GRBs / yr

#### Lobster

- Lobster optic for wide-field X-ray focusing
- ~0.5 sr with 100x sensitivity of coded apertures
- Explorer with IR telescope, ISS and ESA small mission

#### JANUS

- X-ray coded aperture
- Very large field of view (~4 sr) with arcmin imaging

#### **ACT Compton Telescope**

- Several concepts under study and balloon flights
- Larger FoV, large area Si, Ge, & CZT stacks

![](_page_16_Picture_14.jpeg)

ACT

![](_page_16_Picture_16.jpeg)

Lobster

# **Future Hard X-ray Polarization Instrument**

PoGO

![](_page_17_Figure_2.jpeg)

Technology development phase

Compton scattering polarization

Jet outflows & SNRs

Complementary to GEMS in X-rays

![](_page_17_Figure_7.jpeg)

![](_page_17_Picture_8.jpeg)

#### Crab Nebula - Chandra

![](_page_17_Picture_10.jpeg)

# Gamma 400 Mission

Russian, high-energy γ-rays

1 GeV - 3 TeV

1m x 1m

1700 kg

Pair conversion telescope Jet outflows & SNRs

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_7.jpeg)

![](_page_18_Figure_8.jpeg)

30 r.1.

# **Future HE Gamma Ray Technologies**

#### Scintillating Fibers

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

Binns, Buckley & Wash U. group

#### Si Strip Detectors

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

LAT tracker team Japan, Italy, US

### **Future Technologies cont.**

![](_page_20_Picture_2.jpeg)

Hunter & GSFC group

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

### **HE Gamma Ray Angular Resolution**

![](_page_23_Figure_1.jpeg)

Buckley

### **HE Gamma Ray Angular Resolution**

![](_page_24_Figure_1.jpeg)

Buckley

# **Future Very High Energy Instruments**

- HESS, VERITAS, MAGIC upgrades
  - more dishes, larger dishes
- HAWC
  - wide-field water instrument at high altitude
  - 15x better sensitivity than Milagro
- *CTA* 
  - large arrays of small dishes

 $\Rightarrow$  high sensitivity

- smaller arrays of large dishes

 $\Rightarrow$  lower threshold

- MACE
  - India, 21m dish, 4200 m altitude
- LHAASO
  - Yangbajing, China
  - huger air shower facility

![](_page_25_Picture_16.jpeg)

![](_page_25_Figure_17.jpeg)

# **Balloon Payloads**

Many groups have been active in gamma-ray ballooning GSFC, MSFC, Berkeley, Harvard, San Diego, UNH, MPE, Tübingen, Rome, Bologna, Milan, Southampton, Toulouse, San Paolo, U. Tokyo, Tata, ....

New technologies and new science

Example: Harvard/GSFC/MSFC ProtoEXIST - Hard X-ray imager, large CZT array

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_27_Picture_0.jpeg)

# **InFOCUS: Hard X-ray Polarimetry**

#### Multilayer mirrors

Hard X-rays 5 - 80 keV

X-Calibur polarimeter

InFOCµS balloon instrument

![](_page_28_Picture_5.jpeg)

Barthelmy, Krawczynski, Okajima, (Tueller)

4U 0115

![](_page_28_Figure_8.jpeg)

![](_page_28_Picture_9.jpeg)

![](_page_28_Picture_10.jpeg)

2.6 arcmin HPD

# Summary

- We living in a privileged time with INTEGRAL, Swift, Fermi, NuSTAR, HESS, MAGIC, VERITAS
- This era may continue for  $\sim 5$  years
- Future space missions will be:
  - smaller and focused (NASA, ESA, JAXA)
  - becoming larger (Russia, India, China)
- New ground VHE instruments under development

# **Motivations for Future Instruments**

beaming in jetted sources spectral components variability in jetted sources leptonic vs hadronic outflows internal vs external shock models polarization in magnetic outflows origin of short GRBs GRB probes of high-z universe spectra in MeV desert

multiwavelength, long time broad spectral coverage broad spectral coverage multiwavelength during prompt multiwavelength during prompt polarimetry arcsec positions, hard  $\gamma$ -rays soft  $\gamma$ -rays, IR spectroscopy Compton telescope