The Search for Binaries in Post-AGB Stars: Do Binary Companions Shape the Nebulae?

Bruce J. Hrivnak (Valparaiso University)

- Motivation for question

Valparaiso
University

- How to detect
- Photometric study
- Radial velocity study
- Results \& Implications
(PhD thesis advisor: Robert H. Koch - binary stars)

1. MOTIVATION: Why search for binaries in post-AGBs?

Shapes of planetary nebulae (PNs):

- Basic classification of round, elliptical, butterfly (Balick)
- Commonly show an axial or point symmetry

Shapes of proto-planetary nebulae (or pre-PNs, PPNs):

- Preceeding stage of evolution
- Star making transition from AGB to PN
- Images show the axial structure already formed
- Many are bipolar
- Some show an obscured equatorial region
- How is this formed? \rightarrow binary?

- PPNs are focus of this talk

1. MOTIVATION: Why search for binaries in post-AGBs?

What are possible mechanisms to produce axial and point symmetry?

1. Binary companion

- Focusing mass loss into orbital plane --> disk (collimating outflow)

2. Rapid rotation

- Spinning up star to increase mass loss at equator --> disk (This might be enhanced or sustained by a binary companion)

3. Magnetic field

- Magnetically confined ionized mass outflow to bipolar lobes (Probably need a binary companion to sustain the magnetic field through transfer of angular momentum)
> Thus all 3 mechanisms appear to require or are sustained by a binary companion

Thus common to hear it stated that bipolar PNs and PPNs are due to or even imply a binary companion --> Let's examine this claim

1. MOTIVATION: Why search for binaries in post-AGBs?

Identification of PPNs: What are the difficulties?

- Short lifetime: few thousand years $\left(10^{3} \mathrm{yr} / 10^{9} \mathrm{yr} \sim 15 \mathrm{~min} / 75 \mathrm{yr}\right)$
- Partial obscuration by circumstellar gas, dust
- Prior to 1983, only a few known (ex., Egg Nebula)

Key to Discovery of PPNs: (led by Sun Kwok)

- Surrounding dust is cool, radiates in infrared
- IRAS satellite, all-sky survey (1983)
- 4 wavelengths: $12,25,60100 \mu \mathrm{~m}$
- 250,000 objects

- We selected candidates based on IR brightness and color
- Visible counterparts found by matching the positions of IRAS objects with stars in catalogs
- or (ideally) searches at telescope with IR detector

1. MOTIVATION: Why search for binaries in post-AGBs?

Properties of PPNs

- Objects evolving at constant L (AGB \rightarrow PPN $\rightarrow \mathrm{PN}$), increasing T
- SpT: G - B Iab central star
- Evidence of mass loss on AGB
- Circumstellar envelope, seen in faint scattered visible light
- CO gas, seen in sub-mm,
- Dust, seen in mid-IR
- $\mathrm{M}(\mathrm{CSE})=0.1-0.5 \mathrm{M}_{\odot}$
- Evidence of nucleosynthesis
- Enhanced C, s-process elements
- Physical properties of star (ranges)
- T: 5000-30,000 K
$\mathrm{L}: 5000-10,000 \mathrm{~L}_{\odot} \quad$ (assumed)
- R: $100-4 \mathrm{R}_{\odot}$ M: 0.5-0.8 M_{\odot}
(assumed)
- $\quad 100$ PPNs \& candidates

1. MOTIVATION: Why search for binaries in post-AGBs?

Properties of PPNs

- Objects evolving at constant L (AGB \rightarrow PPN $\rightarrow \mathrm{PN}$), increasing T
- SpT: G - B Iab central star
- Evidence of mass loss on AGB
- Circumstellar envelope, seen in faint scattered visible light
- CO gas, seen in sub-mm,
- Dust, seen in mid-IR
- $\mathrm{M}(\mathrm{CSE})=0.1-0.5 \mathrm{M}_{\odot}$
- Evidence of nucleosynthesis
- Enhanced C, s-process elements
- Physical properties of star (ranges)
- T: 5000-30,000 K

L: $5000-10,000 \mathrm{~L}_{\odot}$ (assumed)

- R: $100-4 \mathrm{R}_{\odot}$ M: 0.5-0.8 M ${ }_{\odot}$ (assumed)
- \quad 100 PPNs \& candidates

(Astronomy, July 2011)

2. HOW TO DETECT BINARIES IN PPNs?

1. Photometric variations

- Eclipse - unlikely unless very short P
- Irradiation effect: by a hot companion

$$
\begin{aligned}
&\left(\mathrm{P}_{\mathrm{ptm}}=\mathrm{P}_{\text {orbit }}\right) \\
&\left(2 \mathrm{P}_{\mathrm{ptm}}=\right.\left.\mathrm{P}_{\text {orbitit }}\right)
\end{aligned}
$$

- Ellipsoidal effect: tidal distortion

Methods used by Bond (2000), Miszalski et al. (2009), Hillwig \& others to identify binary companions to central stars of PNs (CSPNs)

- Results: \#=40, $\mathrm{P}=1-8 \mathrm{~d}$--> $10-20 \%$ of PNe have close binaries
- Periodic obscuration by circumbinary dust of binaries in longer-P orbits
- Observed in some post-AGB or post-RG binaries (e.g., Red Rectangle)
- Note, however, that evolved binaries in this class typically do not possess a nebula and will not evolve into PNs

3. PHOTOMETRIC VARIATIONS IN PPNs

Light studies of the central star:

Photometric monitoring program at Valparaiso University, 1994 - present ($>17 \mathrm{yrs}$), 30 PPNs, V=8-14 mag,
$0.4-\mathrm{m}$ campus telescope with CCD, undergraduate students

3. OUR LONG-TERM LIGHT CURVE STUDY OF PPNs

3. OUR LONG-TERM LIGHT CURVE STUDY - RESULTS

- All vary in brightness; range $0.15-0.6 \mathrm{mag}$
- $\mathrm{P}=150-35 \mathrm{~d}(\mathrm{G} 8-\mathrm{F} 3)$ for sample of 12 C -rich
- Trend of shorter P with higher $\mathrm{T}_{\text {eff }}$
- Hotter ones ($\mathrm{SpT}=\mathrm{B}$) vary on even shorter timescale (days)
- Multi-P or variable amplitude \rightarrow pulsation
- Photometric variability due to pulsation; no evidence for binarity
- What constraints does this set? What would we expect?

(see Hrivnak et al. 2009, ApJ, 709, 1042)

3. PHOTOMETRIC VARIATIONS IN PPNs

What would these look like? - Ellipsoidal

- PPN: $\mathrm{M}_{\mathrm{PPN}}=0.62 \mathrm{M}_{\odot} \quad$ Companion: Main Seq, $\mathrm{M}_{2}=0.5 \mathrm{M}_{\odot}$
- PPN just within Roche lobe
- $\quad \mathrm{SpT}=\mathrm{G}, \mathrm{R}=90 \mathrm{R}_{\odot}, \rightarrow \mathrm{P}_{\text {orbit }}=1.0 \mathrm{yr}$

Light curve $\left(i=90^{\circ}\right)$

$$
\begin{aligned}
& i=90^{\circ}: \Delta \mathrm{V}=0.18 \mathrm{mag} \\
& i=60^{\circ}: \Delta \mathrm{V}=0.12 \\
& i=30^{\circ}: \Delta \mathrm{V}=0.04
\end{aligned}
$$

However,

- If PPN avoided Roche lobe overflow at tip of AGB, when $\mathrm{R} \sim 400 \mathrm{R}_{\odot} \rightarrow \mathrm{P}_{\text {orbit }}=11 \mathrm{yr}$
- Then at $\mathrm{SpT}=\mathrm{G}, \mathrm{R}=90 \mathrm{R}_{\odot} \ll \mathrm{R}($ Roche $) \rightarrow i=90^{\circ}: \Delta \mathrm{V}=0.002 \mathrm{mag}$ Binary photometric variations would require special condition (edge-on, orbital decay, ...) \rightarrow non-detection not a strong constraint

2. HOW TO DETECT BINARIES IN PPNs?

1. Photometric variations

2. Radial velocity variations

- Orbital motion
- Used in some searches for binary central stars of PNs; complicated by intrinsic variations, winds - unsuccessful
- Can sample companions of intermediate separations, $1 \mathrm{mo}<\mathrm{P}<$ few x 10 years
- Illustration:
- PPN: $\mathrm{M}_{\text {PPN }}=0.62 \mathrm{M}_{\odot} \quad$ Companion: Main Seq, $\mathrm{M}_{2}=0.5 \mathrm{M}_{\odot}$
- PPN just within Roche lobe at $\mathrm{SpT}=\mathrm{G} \quad \mathrm{P}_{\text {orbit }}=1.0 \mathrm{yr}$
- $\rightarrow \mathrm{V}_{\mathrm{PPN}}=13 \mathrm{~km} / \mathrm{s}$
(measure $\mathrm{K}=\mathrm{V} \sin i$ but $\sin 30^{\circ}=0.5$)
- If $\mathrm{P}_{\text {orbit }}=11 \mathrm{yr} \rightarrow \mathrm{V}_{\mathrm{PPN}}=6.3 \mathrm{~km} / \mathrm{s}$ (just detached at tip of AGB)
- If $P_{\text {orbit }}=30 \mathrm{yr} \rightarrow \mathrm{V}_{\text {PPN }}=4.5 \mathrm{~km} / \mathrm{s}$

4. OUR RADIAL VELOCITY STUDY OF PPNs

- Targets: 7 bright PPNs, SpT = F-G Iab
- Many, sharp lines (advantage over hot central stars of PNs)
- $\mathrm{V}=7-11 \mathrm{mag}$
- Goal - to find binaries (or at least set limits on them)
- Observations at the Dominion Astrophysical Obs (Victoria, Canada)
- 1991 - 1995 (initial study)
- 2007 - present (new study)
- No. obs. each $=40-100$
- Precision $\sim 0.7 \mathrm{~km} / \mathrm{s}$
- Collaborators: D. Bohlender, A. Woodworth, S. Morris, (DAO), C. Scarfe (U. Vic)

4. RESULTS OF INITIAL 1991-1995 RV STUDY

- IRAS 22223+4327 $\quad P(R V)=89 \mathrm{~d} \sim \mathrm{P}(\mathrm{LC})=89 \mathrm{~d}$

4. RADIAL VELOCITIES IN PPNs: Long-term Results

One case of clear velocity change beyond pulsation

- IRAS $22272+5435 \quad \Delta \operatorname{Vr}($ early-1990s - late-2000s $)=2.6 \mathrm{~km} / \mathrm{s}$
- $\mathrm{P}>22$ years, $\mathrm{K}=1.3 \mathrm{~km} / \mathrm{s}$
- Limiting case: If we assume $\mathrm{P}=22 \mathrm{yr}, \mathrm{K}=1.3 \mathrm{~km} / \mathrm{s}, \mathrm{M}_{\mathrm{PPN}}=0.62 \mathrm{M}_{\odot}$, and $e=0$, then $\mathrm{M}_{2}=$ depends on inclination i :
- $\quad i=25^{\circ}$ from model (Ueta et al. 2001, mid-IR) $\rightarrow \mathrm{M}_{2}=0.27(+/-0.04)$
- If circular orbit, $\mathrm{a}=8 \mathrm{AU}=1700 \mathrm{Rs} \gg \mathrm{R}(\mathrm{AGB}) \gg \mathrm{R}(\mathrm{PPN})$
- Would survive detached at tip of AGB
\rightarrow Likely binary

4. RADIAL VELOCITIES IN PPNs: Long-term Results

Others show no long-term variations beyond pulsation

HST images

Our observations (filled circles) and others from literature (open circles).

4. RADIAL VELOCITY VARIATIONS IN PPNs

Others show no long-term variations beyond pulsation
HST images

4. RADIAL VELOCITIES IN PPNs: Long-term Results

What about possible bias - selection effects? - Chose brightest, more likely seen at low inclination (less obscuration), more pole-on

However, non-detection sets constraints on possible binaries

If $\mathrm{M}_{2} \&$	$i>15^{\circ}$	$i>30^{\circ}$	$i>45^{\circ}$
$0.4 \mathrm{M}_{\odot}$	$\mathrm{P}>3.5 \mathrm{yr}$	$\mathrm{P}>24.5 \mathrm{yr}$	
$0.25 \mathrm{M}_{\odot}$	$\mathrm{P}>1.1 \mathrm{yr}$	$\mathrm{P}>8 \mathrm{yr}$	$\mathrm{P}>23 \mathrm{yr}$

or, for example

- $\mathrm{M}_{2}>0.3 \mathrm{M}_{\odot}$ is excluded for $\mathrm{P}<13$ yr at $i>30^{\circ}$
M_{2} and P for various inclinations (i)
(Assuming $\mathrm{M}_{\mathrm{PPN}}=0.62 \mathrm{M}_{\odot}, \mathrm{K}=2.0 \mathrm{~km} / \mathrm{s}$, circular orbits)
(see Hrivnak et al. 2011, ApJ, 734, 25)

5. RESULTS OF VARIABILTY STUDIES OF PPNs

- Photometric (\#=30): All vary due to pulsation; no evidence of binaries '
- Radial Velocity (\#=7): All vary due to pulsation; 1 tentative binary
- Likely binary ($\mathbf{P}>22 \mathbf{y r s}, \mathbf{M}_{2}>0.27 \mathrm{M}_{\odot}$)
- Possible selection effects, but
- Results set constraints on possible binary companions
- Must have low mass ($<0.25 \mathrm{M}_{\odot}$) or long period ($\mathrm{P}>30 \mathrm{yrs}$)
- Could be brown dwarfs or super Jupiters
- Will not evolve into short-P binary central stars of PNe
- Ideally observe edge-on bipolar PPNe with obscuring torus

5. NEW PROGRAM: Edge-on PPNs in Near-IR Spectroscopy

Bipolar, equatorial enhancement obscuring star

3 edge-on PPNs, but each of which has a visible star in near-IR
ex. IRAS 17441-2411

New observing program:

- Began this last year - Near-IR, high-resolution spec, 8 -m telescopes
- Gemini-S (Ken Hinkle - NOAO) Phoenix ($\mathrm{R}=70,000$) - discontinued
- ESO (Florian Kerber - ESO) CRIRES ($\mathrm{R}=100,000$)
- Data reduction in process
- If $\Delta \mathrm{V}_{\mathrm{R}}>10-15 \mathrm{~km} / \mathrm{s}$ (larger than pulsation) \rightarrow (possible/likely) binary

5. RESULTS OF VARIABILTY STUDIES OF PPNs

- Implications of non-detections
- Comparison with results of PNs binary studies
- 10-20 \% CSPN have short-period (P~1 day) photometric binaries
- Short P --> Common envelope evolution
- Q - Might PPNs be binaries, but
- In common envelope - but this lasts only a short time ($\sim 1 \mathrm{yr}$), unlikely
- Long P (P>30-100 years) - but then effect on shaping may be small
- Secondary is not a MS star but brown dwarf or a massive planet would not be detected.
- If $\mathbf{5 0 \%}$ stars are binaries, why not more detected?
- Binary fraction of Duquennoy \& Mayor (F-G) - 33% SB, but
- $\mathbf{1 4 \%}$ of small sample ($1 / 7$) not discrepant

5. RESULTS OF VARIABILTY STUDIES OF PPNs

- What does cause $\mathbf{P N} \&$ shape the nebula?
- Since it appears that these 7 objects are PPNs and shaping has started, then this suggests two ways to form PNs \& shape the nebulae:

1. Common envelope (CE) evolution with ejection and shaping of the envelope \rightarrow short-period binary central star of PNs
2. Non-CE - Since CE spiral-in and ejection timescale on order of 1 yr and we find PPNs still retaining their envelopes, thus CE ruled out by statistics and time scale. So ...

- Binary, with companion of low mass $\left(<0.25 \mathrm{M}_{\odot}\right)$ or long period ($\mathrm{P}>30 \mathrm{yrs}$), or
- Non-binary (pulsational induced?)
- Studies continuing
- Continuing to monitor
- V_{R} : to further constrain possible binary properties
- LC: study pulsation
- To investigate $\Delta \mathrm{P}$ (decades) \rightarrow rate of evolution of post- AGB
- New PPNs in SH (with Henson, Hillwig, Kaitchuck - SARA)

Pulsation - New contemporaneous light, color, and velocity curves

Star is brightest, hottest when \sim smallest

Results: Pulsational Variability in PPNs

1. All vary in light:

- $\Delta \mathrm{V} \sim 0.15-0.60 \mathrm{mag}$
- not simple periodic var.: varying ampl., varying or multiple P
- $\mathrm{P}=153-35 \mathrm{~d}$, G-F stars; short-term variability among B stars
- Trend of decreasing P, Amplitude with increasing $\mathrm{T}_{\text {eff }}$

2. All vary in velocity:

- $\Delta \mathrm{V}_{\mathrm{r}} \sim 8-12 \mathrm{~km} / \mathrm{sec}$
- $\mathrm{P}(\mathrm{Vr}) \sim \mathrm{P}(\mathrm{LC})$

3. Contemporaneous Light \& Velocity: (in progress)
$-\sim$ Smallest when brightest, hottest -- only 1 good case thus far, but more in progress
$\Delta \mathrm{V} \rightarrow \mathrm{L}_{\text {max }} / \mathrm{L}_{\text {min }} \quad \Delta(\mathrm{V}-\mathrm{R}) \rightarrow \Delta \mathrm{T}_{\text {eff }} \rightarrow \mathrm{R}\left(\mathrm{L}_{\text {max }}\right) / \mathrm{R}\left(\mathrm{L}_{\text {min }}\right)$ $\Delta \mathrm{Vr} \rightarrow \Delta \mathrm{R}$ (during pulsation cycle) $\rightarrow \mathrm{R}_{\text {max }}, \mathrm{R}_{\text {min }},<\mathrm{R}>$ $\mathrm{R} \& \mathrm{~T}_{\text {eff }} \quad \rightarrow \mathrm{L} \quad-$ first direct determinations for PPNs \& R with $\log g$ (model atm) $\rightarrow \sim \mathrm{M}$ (distance>1 kpc)

Analyses of Pulsational Variability

Models needed

Fokin et al. (2001)

- non-linear radiative models of post-AGB stars
- M: 0.6, 0.8 $\mathrm{M}_{\text {Sun }}$
- $\mathrm{T}_{\text {eff }}: 5600-6000 \mathrm{~K}$
- L: 5000-8000 $\mathrm{L}_{\text {Sun }}$
- Results
$\mathrm{P}=25-50 \mathrm{~d}$,
$\Delta \mathrm{V}=0.2-0.4 \mathrm{mag}$, $\Delta \mathrm{V}_{\mathrm{r}}=+/-5 \mathrm{~km} / \mathrm{s}$

Models: $\mathrm{M}=0.8 \mathrm{M}_{\text {Sun }}$

- $\mathrm{X}=0.7, \mathrm{Z}=0.004$

L

Fig. 1. Grid of computed bolometric light curves ($M=0.8 M_{\odot}, X=0.7, Z=0.004$ and with the OPAL92 opacity table). Model axes are the time (in days) as abscissa, and $\Delta m_{\text {bol }}$ as ordinates.

6. Acknowledgements

- Acknowledgements:
- Wen Lu (Valparaiso U) \& ~ 25 students over past 17 years (LC)
- Dominion Astrophysical Observatory \& collaborators (VC)
- National Science Foundation
- Indiana Space Grant Consortium (student funding)
- Robert H. Koch

6. Acknowledgements

- Robert H. Koch
- PhD advisor
- Diligently
- Carefully

1980 (following my thesis defense)

- Collaborator
- Respect the data
- Bigger picture
- 5 papers together

1985 IAU New Delhi, Com 42 - he asked me to serve as secretary)

- Friend
- Encouragement

2008 - dinner together with Joanne and my wife Lucy during a Philadelphia visit

Pulsation - New contemporaneous light, color, and velocity curves

Including new Vr by Zacs et al. (2009)
IRAS 22272+5435

LC

Vr

Star is brightest, hottest when smallest (S)
and faintest, coolest when largest (L) or just after.

Light Curves - Period Determination

1. MOTIVATION: Searching for Candidates

Image of IRAS 19477+2401

- no visible star

Discovery of IRAS 18095+2704 - bright star! (V=10.5)

3. PHOTOMETRIC VARIATIONS IN PPNe

PPNe	$\mathrm{P}_{(\mathrm{d})}$	SpT	$\mathrm{T}_{\text {eff }}{ }^{*}$	$\Delta(\mathrm{~V}-\mathrm{R})$	$\Delta \mathrm{T}_{\text {eff }}$	$\Delta \mathrm{V}_{(\mathrm{mag})}$
05113	133	G8 Ia	5250	0.12	520	0.67
02229	153	G8 Ia	5500	0.08	500	0.54
20000	153	G8 Ia	5350	0.10	400	0.59
22272	130	G5 Ia	5750	0.09	590	0.49
07430	$136:$	G5 Ia	6000	0.05	310	0.23
05341	94	G2 Ia	6500	0.07	510	0.13
22223	89	G0 Ia	6500	0.06	440	0.21
23304	85	G2 Ia	6750	0.08	590	0.20
AFGL2688	\ldots	F5 Iae	6500	0.05	370	0.18
04296	$71:$	G0 Ia	7000	0.06	470	$0.13:$
07134	$35:$	F5 I	7250	0.04	340	0.18
19500	$38:$	F3 I	8000	0.05	640	0.13

* $\mathrm{T}_{\text {eff }}$ from model atmosphere analysis

RESULTS OF OUR RADIAL VELOCITY STUDY OF OTHER POST-AGB OBJECTS

- Are we not able to find binaries? - Yes, we can
- HD $46703 \Delta V=32 \mathrm{~km} / \mathrm{s}$
$-P(R V)=606 \mathrm{~d}, \mathrm{~K}=16.3 \mathrm{~km} / \mathrm{s}, \mathrm{e}=0.27 \quad-->$ binary

Including observations by Van Winckel \& Waelkens

RESULTS OF OUR RADIAL VELOCITY STUDY OF OTHER POST-AGB OBJECTS

- Are we able to find binaries with pulsators? - Yes
- $89 \mathrm{Her} \quad \Delta V=12 \mathrm{~km} / \mathrm{s} \quad P(R V)=292 \mathrm{~d}$ (our data), 289 d (all data), $\mathrm{K}=3.3 \mathrm{~km} / \mathrm{s}, \quad \mathrm{e}=0.18 \quad$--> binary

Including observations by Waters et al. (1993)
89 Her - with binary orbit removed $P(R V)=66 \mathrm{~d} \sim P(L C)=65 \mathrm{~d}, \mathrm{~K}=1.6 \mathrm{~km} / \mathrm{s}$ --> pulsator

2. HOW TO DETECT BINARIES IN PPNe?

1. Visible companions

- Distant companions: 0.5 " at $1 \mathrm{kpc}=>\mathrm{a}=500 \mathrm{AU}=>\mathrm{P} \sim 10^{4} \mathrm{yrs}$
- Results:
- HST - WFPC2: \# objects~66, \# binaries = 0 (Ueta; Sahai; \#48)
- HST - NICMOS: \# obj.~20, \# binaries = 0 (Su; Hrivnak; Sahai)
- Ground-based NIR AO: \# obj.~9, \# binaries=1: (Sanchez Contraras)
- (These studies were NOT optimized to find faint companions)
- If too distant, effect on shaping is likely small

2. Photometric variations

- Eclipse - unlikely unless very short P
- "Reflection" (re-radiation) effect: hot + cool stars $\quad\left(\mathrm{P}_{\mathrm{ptm}}=\mathrm{P}_{\text {orbit }}\right)$
- Ellipsoidal effect: tidal distortion
- Methods used by Bond to identify binary companions to PNNe
- Results: Reflection or Ellipsoidal - \#=10, Eclipsing - \#=6:

$$
P=1-16 d-->10-15 \% \text { of PNe are binaries. }
$$

(Bond 2000 (APN2); DeMarco 2006)

- Close companions: $\mathrm{P}<20 \mathrm{~d}$

HOW TO SEARCH FOR BINARIES IN PPNe? - 2

3. Composite spectra

- Unlikely, would require both objects to be AGB, post-AGB
- Could have any separation, P

4. Radial velocity variations

- Orbital motion
- Used in more recent searches for binary PNNe (DeMarco et al. 2006)
- Can sample companions of intermediate separations
- Assume $\mathrm{M}_{1}=0.6, \mathrm{M}_{2}=0.6, \mathrm{e}=0$
- $\mathrm{K}_{1}=20 \mathrm{~km} / \mathrm{s}$-->

$\left(i=90^{\circ}\right)$	$\left(i=30^{\circ}\right)$
$\mathrm{P} \sim 0.5 \mathrm{yr}$	$\mathrm{P} \sim 20 \mathrm{~d}$
$\mathrm{P} \sim 4 \mathrm{yr}$	$\mathrm{P} \sim 0.5 \mathrm{yr}$
$\mathrm{P} \sim 150 \mathrm{yr}$	$\mathrm{P} \sim 20 \mathrm{yr}$
$\left(i=90^{\circ}\right)$	$\left.\underline{\left(i=30^{\circ}\right.}\right)$
$\mathrm{P} \sim 0.3 \mathrm{yr}$	$\mathrm{P} \sim 15 \mathrm{~d}$
$\mathrm{P} \sim 12 \mathrm{yr}$	$\mathrm{P} \sim 1.5 \mathrm{yr}$
$\left(i=90^{\circ}\right)$	$\underline{\left(i=30^{\circ}\right)}$
$\mathrm{P} \sim 1.2 \mathrm{yr}$	$\mathrm{P} \sim 50 \mathrm{~d}$
$\mathrm{P} \sim 40 \mathrm{yr}$	$\mathrm{P} \sim 4 \mathrm{yr}$

IMPLICATIONS OF OUR NON-DETECTION OF BINARY PPNe

- Comparison with results of PNe binary studies
- \% short-period photometric binaries $\sim 10-15 \%$ (Bond)
- short P --> Common envelope evolution
- RV studies: many (most) variable, but that does not mean binary (DeMarco 2006)
- ? Might PPNe be binaries, but
- In common envelope
- But this lasts only a short time, unlikely
- Long P ($\mathrm{P}>10-100$ years) - but then effect on shaping may be small
- Secondary is not a MS star but brown dwarf or a planet - would not be detected.
- Since it appears that these 7 objects are PPNe and shaping has started
- then this suggests two ways to form PNe ,
- Common envelope evolution (binary PNNe)
- Non-common envelope process (occurring in these PPNe)
- Distant, low-mass companions?
- Single, pulsating PPNe?

RESULTS OF OUR RADIAL VELOCITY PROGRAM OF PPNe

- No binaries found among PPNe sample (\#=7) - with $\mathrm{K}>2.5 \mathrm{~km} / \mathrm{s}$
- For $i=30-->\mathrm{a}>6 \mathrm{AU}, \mathrm{P}>14 \mathrm{yr}$
- For $i=60-->\mathrm{a}>17 \mathrm{AU}, \mathrm{P}>70 \mathrm{yr}$

-Why no binaries detected?

- Not primarily selection effect (bright --> low i, low V amplitude)
-Binary, but in common envelope
- But this lasts only a short time, unlikely
- Long P ($\mathrm{P}>10-100$ years) - but then effect on shaping may be small

3. PHOTOMETRIC VARIATIONS IN PPNs

What would these look like? - Ellipsoidal

- PPN: $\mathrm{M}_{\mathrm{PPN}}=0.62 \mathrm{M}_{\odot} \quad$ Companion: Main Seq, $\mathrm{M}_{2}=0.5 \mathrm{M}_{\odot}$
- PPN just within Roche lobe
- $\mathrm{SpT}=\mathrm{G}, \mathrm{R}=90 \mathrm{R}_{\odot}, \rightarrow \mathrm{P}_{\text {orbit }}=1.0 \mathrm{yr}$

$$
i=90^{\circ}
$$

$$
\begin{aligned}
& i=90^{\circ}: \Delta \mathrm{V}=0.18 \mathrm{mag} \\
& i=60^{\circ}: \Delta \mathrm{V}=0.12 \\
& i=30^{\circ}: \Delta \mathrm{V}=0.04
\end{aligned}
$$

- If PPN avoided Roche lobe overflow at tip of AGB, when $\mathrm{R} \sim 400 \mathrm{R}_{\odot} \rightarrow \mathrm{P}_{\text {orbit }}=11 \mathrm{yr}$
- Then at $\mathrm{SpT}=\mathrm{G}, \mathrm{R}=90 \mathrm{R}_{\odot} \ll \mathrm{R}$ (Roche) $\rightarrow i=90^{\circ}: \Delta \mathrm{V}=0.002 \mathrm{mag}$ Binary photometric variations would require special conditions

4. RESULTS OF INITIAL 1991-1995 RV STUDY

- IRAS 22223+4327
(G0 Ia)

4. RADIAL VELOCITIES IN PPNe: Long-term Results

Bias - Selection effects: Chose brightest - more likely seen at low inclination, more pole-on

Any undetected binaries have low mass or/and long periods

However, non-detection sets constraints on possible binaries:

- If $\mathrm{M}_{2}=0.4 \mathrm{M}_{\odot}$, then $\mathrm{P}>3.5 \mathrm{yr}$ if $i>15^{\circ}$,

$$
\mathrm{P}>24.5 \mathrm{yr} \text { if } i>30^{\circ}
$$

- If $\mathrm{M}_{2}=0.25 \mathrm{M}_{\odot}$, then $\mathrm{P}>1.1 \mathrm{yr}$ if $i>15^{\circ}$,
$\mathrm{P}>8 \mathrm{yr}$ if $i>30^{\circ}, \mathrm{P}>23 \mathrm{yr}$ if $i>45^{\circ}$
or
- $\mathrm{M}_{2}>0.3 \mathrm{M}_{\odot}$ is excluded for $\mathrm{P}<13 \mathrm{yr}$ at $i>30^{\circ}$
M_{2} and P for various inclinations (i)
(Assuming $\mathrm{M}_{\mathrm{PPN}}=0.62 \mathrm{M}_{\odot}, \mathrm{K}=2.0 \mathrm{~km} / \mathrm{s}$, circular orbits)

5. RESULTS OF VARIABILTY STUDIES OF PPNs

- Comparison with results of PNe binary studies
- \% short-period photometric binaries $\sim 10-15 \%$ (Bond)
- short P --> Common envelope evolution
- RV studies: many (most) variable, but that does not mean binary (DeMarco 2006)
- ? Might PPNe be binaries, but
- In common envelope
- But this lasts only a short time, unlikely
- Long P ($\mathrm{P}>10-100$ years) - but then effect on shaping may be small
- Secondary is not a MS star but brown dwarf or a planet - would not be detected.
- Since it appears that these 7 objects are PPNe and shaping has started
- then this suggests two ways to form PNe,
- Common envelope evolution (binary PNNe)
- Non-common envelope process (occurring in these PPNe)
- Distant, low-mass companions?
- Single, pulsating PPNe?

Beginning the Search: Finding Candidates (1st decade)

Properties: Did we find what we expected?

- Luminous star, supergiant spectra? Yes
- T (surface) $=5,000-30,000 \mathrm{~K}$?

$$
\text { Yes }(\mathrm{SpT}=\mathrm{G}, \mathrm{~F}->\mathrm{B})
$$

- Chemical signature of post-RG nucleosynthesis?

$$
\text { Yes }\left(C_{2}, C_{3}, B a\right)
$$

- Expanding circumstellar envelope of gas?

Yes (radio-OH,CO)

- Double-peaked spectral energy distribution? Yes (IR studies)

Numbers of PPNs:

- 60 firm candidates
- 60 possible candidates
- possible confusion

5. RESULTS OF VARIABILTY STUDIES OF PPNs

- What does cause PN \& shape the nebula?
- Two paths to form \& shape PN?

1. Common envelope (CE) evolution with ejection and shaping of the envelope \rightarrow short-period binary central star of PNs
2. Non-CE - since CE spiral-in and ejection timescale on order of 1 yr and we find PPNs still retaining their envelopes, thus non-CE - Binary, with companion of low mass $\left(<0.25 \mathrm{M}_{\odot}\right)$ or long period ($\mathrm{P}>30 \mathrm{yrs}$), or

- Non-binary (pulsational induced?)

