LOW-MASS STARS IN SYNOPTIC SURVEYS

www.sdss3.org

RHK CONFERENCE
CULLEN BLAKE

OUTLINE

TIME DOMAIN DATA:

A POWERFUL TOOL FOR STUDYING LOW-MASS STARS

DOUBLE-LINED ECLIPSING BINARIES -STELLAR MASSES AND RADII

STATISTICAL PROPERTIES OF BINARIES ■FORMATION HISTORY

SYNOPTIC SURVEYS:

 ASTRONOMY IN THE TIME DOMAIN

Imaging:
$2 \mathrm{~TB} /$ night of data
g, r, i, z, y filters
$30,000 \square^{\circ}$
10 visits / filter

$$
\mathrm{r}<22
$$

Imaging:
10 TB / night of data u, g, r, i, z, y filters
$18,000 \square^{\circ}$
200 visits / filter
$\mathrm{r}<24.5$

WIDE-RANGING SCIENCE

-Solar System Objects

 - Active Galactic Nuclei -Gamma Ray Bursts -Supernovae -Micro, Weak, and Strong LensingAstro-2010 Report

Large-Scale Ground-Based Initiatives		
Priority	Recommendation	Description
1	Large Synoptic Survey Telescope (LSST)	A wide-field optical survey telescope that will transform our observation of the variable universe and will address broad questions from indicating the nature of dark energy to determining whether there are objects that may collide with Earth.

STELLAR VARIABILITY

- Stellar Astrophysics:
- Activity, Pulsations, Binary Stars

- Accretion Physics and Compact Objects:
- Dwarf Novae, CVs

- Galactic Structure:
- RR Lyrae, Cepheids

- Nearby Objects:
- Brown Dwarfs, White Dwarfs

STELLAR ASTROPHYSICS

Binary systems enable direct measurements of the physical properties of stars

Spectroscopic Binary

Astrometric Binary

Eclipsing Binary (203F

SPECTROSCOPIC BINARY STARS

$$
\left(\frac{2 \pi}{P}\right)^{2} a_{1}^{3}=\frac{M_{2}^{3}}{\left(M_{1}+M_{2}\right)^{2}}
$$

MOMENTUM CONSERVATION

$$
K_{1}=\frac{2 \pi a_{1} \sin (i)}{P \sqrt{1-e^{2}}}
$$

SINGLE-LINED (SB1): MASS FUNCTION

$$
M_{2} \sin (i)=C \times\left(M_{1}+M_{2}\right)^{2 / 3}
$$

DOUBLE-LINED (SB2): MASS + LUMINOSITY RATIOS

$$
M_{1} \sin (i)^{3}=C \times P K_{2}\left(1-e^{2}\right)^{3 / 2}\left(K_{1}+K_{2}\right)^{2}
$$

$$
\frac{M_{1}}{M_{2}}=\frac{K_{2}}{K_{1}}
$$

DOUBLE-LINED ECLIPSING BINARIES

SPECTROSCOPY

VELOCITIES OF BOTH STARS

PHOTOMETRY

INCLINATION AND RADII

WHEN COMBINED: MASSES AND RADII

BEDROCK OF STELLAR ASTROPHYSICS!

THEORETICAL EXPECTATIONS: MISSING PHYSICs?

α : mixing length

β : spot
coverage

SYNOPTIC SURVEYS TO THE RESCUE

- PROBLEM 1: DO STELLAR INTERACTIONS BIAS RADII? - PROBABILItY OF ECLIPSE $\propto 1 / a$
- IF $\Delta R \propto 1 / a^{N} \rightarrow$ BIASED TOWARD BIG STARS
- SOLUTION: FIND LONG-PERIOD ECLIPSING SYSTEMS
- PROBLEM 2: SMALL NUMBER OF M AND R MEASUREMENTS
- SOLUTION: MONITOR LARGE NUMBER OF STARS!

SDSS STRIPE 82 - A TESTBED

- 250 SQUARE DEGREES
- UP TO 100 VISITS OVER 9 YEARS
- NEAR-SIMULTANEOUS u, g, r, i, z
$+1-0.02$ MAG AT $r=18$
- 4 MILLION OBJECTS

S82 Coverage

BIG SIGNALS, SPARSE DATA

TYPICAL ECLIPSING BINARY

RELATIVE PHOTOMETRY

$\sigma(\mathrm{i})=25$ MMAG AT $i=19$

NON-GAUSSIAN TAILS

11,000 mid- to late-M stars

FALSE ALARM PROBABILITY OF $\Delta \mathrm{i}>0.2: \sim 10^{-3}$

EXPECTED RATE OF ECLIPSING SYSTEMS: 10^{-4}

ECLIPSE SIGNALS

- ECLIPSES ARE ACHROMATIC: $\Delta z \sim \Delta i \sim \Delta r$

$\triangle \mathrm{i}$ vs. $\Delta \mathrm{z}$ CORRELATION

CANDIDATE SELECTION

SDSS-MEB-1

SIMPLE SELECTION CRITERIA: $\Delta \mathrm{z} \sim \Delta \mathrm{i} \sim \Delta \mathrm{r}>0.2 \mathrm{mag}$

FOLLOWUP CHALLENGE

MASSES AND RADII AT $i=18$:

EXPENSIVE PHOTOMETRY+SPECTROSCOPY

- 100 1\% PHOTOMETRIC POINTS:
- 25 HOURS ON 1-2 M TELESCOPE

- 10 MODERATE-RESOLUTION SPECTRA: - 10 HOURS ON 8 METER TELESCOPE

- FORMER 2MASS TELESCOPE
- MT. Hopkins, AZ
- 1.3 M - FULLY ROBOTIC
- SIMULTANEOUS JHK IMAGING
- PAIRITEL AUTOMATION TEAM:
- J. BLOOM (PI)
- C. BLAKE
- D. STARR
- W. PETERS

REAL-TIME SCHEDULING

MYSQL DATABASE

PAIRITEL

CONTROL PC

DATA REDUCTION

GRB ALERTS

PAIRITEL SCIENCE

GRBS

ECLIPSING BINARIES

PAIRITEL PHOTOMETRY

SDSS-MEB-1

- 1000 INDIVIDUAL OBSERVATIONS OVER 30 DAYS - PERIOD $=0.41$ DAYS

Radial Velocities

RADIAL VELOCITIES REQUIRED TO GET MASSES
RESOLVING LINES OF BOTH STARS CHALLENGING

SDSS-MEB-1 SPECTRUM

Radial Velocities

- KECK+LRIS: 10 SPECTRA AT R~3500, GOOS EXPOSURES

H α LINES: $\sigma \sim 10 \mathrm{kM} / \mathrm{s}$

$\mathrm{K} 1=108 \mathrm{KM} / \mathrm{s} \quad \mathrm{K} 2=122 \mathrm{KM} / \mathrm{s}$ KNOWN PERIOD

TWO OF THE SMALLEST STARS WITH MASS AND RADIUS MEASUREMENTS

Parameter	Value
$M_{1}\left(\mathrm{M}_{\odot}\right)$	0.272 ± 0.020
$M_{2}\left(\mathrm{M}_{\odot}\right)$	0.240 ± 0.022
$a\left(R_{\odot}\right)$	1.850 ± 0.047
$R_{1}\left(\mathrm{R}_{\odot}\right)$	0.268 ± 0.0090
$R_{2}\left(\mathrm{R}_{\odot}\right)$	0.248 ± 0.0084

Pan-STARRS Simulations

Dupuy and Liu (2009, ApJ, 704,1519)

Prediction: ~200 EBs in Pan-STARRS " 3π Survey"

Photometry: $3000 \mathrm{~m}^{2}$-hours of telescope time Spectroscopy: $7000 \mathrm{~m}^{2}$-hours of telescope time

SDSS SPECTROSCOPY

R~2000
380 TO 920 NM 84,000 M STARS

TIME BETWEEN 1 ST AND 3RD SPECTRA

CAN THE SDSS SPECTRA BE USED TO CONSTRAIN THE STATISTICAL PROPERTIES OF SHORT-PERIOD BINARIES?

SPECTROSCOPIC BINARIES IN

SDSS

M STAR
M STAR

$\mathbf{V R V} \sim 20 \mathrm{~km} / \mathrm{s}$
$\sigma \sim 4 \mathrm{KM} / \mathrm{s}$ ~8000 M STARS
Detectable Even With Only Three spectra?
The Close Binary Fraction of Dwarf M Stars
Benjamin M. Clark
Penn Manor High School, 100 East Cottage Avenue, Millersville, PA, 17551
Cullen H. Blake
Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane,
Princeton, NJ 08544
Gillian R. Knapp

RV CONTROL SAMPLE

-TIME BETWEEN OBSERVATIONS: $\Delta t<2$ HOURS

7,000 M DWARFS $(16<i<20.5 ; i-z>0.3)$
-SPECTRA VISUALLY INSPECTED
EMPIRICAL RV ERROR DISTRIBUTION

EXPERIMENTAL SAMPLE

TIME BETWEEN OBSERVATIONS: $2<\Delta t<30$ DAYS
$.1,700$ M DWARFS $(16<i<20.5 ; i-z>0.3)$
-SPECTRA VISUALLY INSPECTED

MONTE CARLO SIMULATIONS

What is N , the Binary Fraction at $a<0.4 \mathrm{AU}$?

BINARY EXPERIMENTAL
FRACTION SAMPLE (6000 RVS)

1. How many binaries detected given $\mathrm{P}(\triangle \mathrm{RV})$?
2. Given N, how many binaries should be detected given the detection efficiency?

CPU MONTH

CLOSE BINARY FRACTION

Posterior Distribution for N

N vs. Primary Mass

BINARY FRACTION: FUNCTION OF STELLAR MASS

 See also Fischer \& Marcy (1992); Lada (2006); Raghavan et al. (2010)
CONCLUSIONS

SYNOPTIC SURVEYS: RICH WITH LOW-MASS STAR SCIENCE

- ECLIPSING BINARY STARS:
- TEST MODELS FOR BOTTOM OF MAIN SEQUENCE
- BINARY STATISTICS:
- PIECE OF THE FORMATION-HISTORY PUZZLE

CHALLENGE: HEAVY BURDEN ON FOLLOWUP OBSERVATIONS

LOW-MASS STAR FORMATION
 OBSERVED BINARY PROPERTIES

THEORETICAL PREDICTIONS:

1. MASS RATIOS~1
2. BINARY FRACTION~40\%
3. SMALL a > LARGE a

RV Estimation

15-MINUTE SPECTRUM

SPECTRAL TEMPLATE FROM BOCHANSKI

CROSS CORRELATION

BARYCENTRIC MOTION

STAR FORMATION

TOTAL BINARY FRACTION

SEPARATION
DISTRIBUTION

RESULTS OF SPH SIMULATIONS

S82 M DWARF LIGHT CURVES

-11,000 M STARS, M4 AND LATER, $i<20$
-NEW PIPELINE TO GENERATE RELATIVE PHOTOMETRY:
-ENSEMBLE OF NEARBY REFERENCE STARS

NUMBER OF VISITS

Sky Quality Monitor

PHOTOMETRIC RECALIBRATION

MONTE CARLO SIMULATIONS

What is N , the Binary Fraction at $a<0.4 \mathrm{AU}$?

POSTERIOR DISTRIBUTION
SURVEY SENSITIVITY
PRIOR
$P(N \mid R V, P(\Delta R V)) \propto P(R V \mid N, P(\Delta R V)) \cdot P(N)$

STELLAR Activity: M DWARFS

FOREGROUND FOG FOR COSMOLOGICAL TRANSIENTS?
GOAL: THE OVERALL STATISTICAL PROPERTIES OF FLARES

STELLAR FLARES

-COMPLEX, POORLY-UNDERSTOOD PHENOMENA

EMISSION FROM RADIO TO XRAY

FLARES IN STRIPE 82

- 40,000 M STARS, 1.6×10^{6} OBSERVATIONS
- MORE THAN $100 \Delta u>1.0$ MAG EVENTS

U BAND MOVIES

FLARE DUTY CYCLE

Overall Duty Cycle: $\Delta \mathrm{u}>1.0 \mathrm{mag}$: M1 ~ 5×10-5
M4 ~ 8×10^{-4}
M6 ~ 1×10^{-2}

REDDER STARS: MORE AND LARGER FLARES

- ~ 1 FLARE/HOUR/ ${ }^{\circ}$ IN STRIPE $82(u<21)$

FLARE ENERGIES AND RATES

Kowalski et al. (2009)

FLARE ENERGY

Hilton et al. (2010)

FLARE DUTY CYCLE

FLARE RATES

Kowalski et al. 2009

FLARE RATE DECREASES WITH STELLAR AGE

FLARE RATES

Ho AcTIVITY FRACTION

$\mathrm{M1} u=19.0 \mathrm{~L}=10^{29} \mathrm{erg} / \mathrm{s}$

M4 $u=22$

$\Delta u=2.2 \mathrm{mag}$

FLARE LUMINOSITY AT $\mathrm{d}=200 \mathrm{PC}$

Flare Colors

Flares are Very Blue

IMPORTANT CAVEATS:
\rightarrow U FILTER HAS RED LEAK
$\rightarrow \sim 2$ MINUTES BETWEEN U AND g (DRIFT SCAN)

SDSS SPECTROSCOPY: THE TIME DOMAIN

FLARE SPECTRA

Hilton et al. (2010)

LINE FLICKERING

RV SHIFTS

LOW-MASS BINARIES

LOW-MASS STARS G STARS

1] MASS RATIOS:

$$
q \sim 1
$$

$$
\mathrm{q} \sim 0.3
$$

2] AVG. SEPARATION: 7 AU
30 AU

3] A>50 AU SYSTEMS: NO
YES

HST (~100 MAS; BOUY 2003)

LOW-MASS STARS IN THE TIME DOMAIN

STELLAR STRUCTURE, EVOLUTION, AND FORMATION

