LOW-MASS STARS IN SYNOPTIC SURVEYS

www.sdss3.org

RHK CONFERENCE

CULLEN BLAKE

OUTLINE

TIME DOMAIN DATA: A POWERFUL TOOL FOR STUDYING LOW-MASS STARS

DOUBLE-LINED ECLIPSING BINARIES
 STELLAR MASSES AND RADII

STATISTICAL PROPERTIES OF BINARIES
 FORMATION HISTORY

SYNOPTIC SURVEYS: ASTRONOMY IN THE TIME DOMAIN

Pan-STARRS

Imaging: 2 TB/night of data g,r,i,z,y filters 30,000 □° 10 visits/filter r<22

Imaging: 10 TB/night of data *u,g,r,i,z,y* filters 18,000 []° 200 visits/filter r<24.5

WIDE-RANGING SCIENCE

LSST

 Solar System Objects -Active Galactic Nuclei Gamma Ray Bursts -Supernovae Micro, Weak, and Strong Lensing -Exotic Phenomena (we haven't thought of yet!) -<u>Stellar Variability</u>

Astro-2010 Report

Large-Scale Ground-Based Initiatives		
Priority	Recommendation	Description
1	Large Synoptic Survey Telescope (LSST)	A wide-field optical survey telescope that will transform our observation of the variable universe and will address broad questions from indicating the nature of dark energy to determining whether there are objects that may collide with Earth.

STELLAR VARIABILITY

<u>Stellar Astrophysics</u>:
 Activity, Pulsations, Binary Stars

<u>Accretion Physics and Compact Objects</u>: Dwarf Novae, CVs

<u>Nearby Objects</u>:
Brown Dwarfs, White Dwarfs

RR Lyrae, Cepheids

Galactic Structure:

STELLAR ASTROPHYSICS

Binary systems enable direct measurements of the physical properties of stars

Spectroscopic Binary

Astrometric Binary

Eclipsing Binary

SPECTROSCOPIC BINARY STARS

KEPLER'S LAW

$$\left(\frac{2\pi}{P}\right)^2 a_1^3 = \frac{M_2^3}{(M_1 + M_2)^2}$$

MOMENTUM CONSERVATION

$$K_1 = \frac{2\pi a_1 \sin(i)}{P\sqrt{1-e^2}}$$

SINGLE-LINED (SB1): MASS FUNCTION

$$M_2 \sin(i) = C \times (M_1 + M_2)^{2/3}$$

DOUBLE-LINED (SB2): MASS + LUMINOSITY RATIOS

$$M_1 \sin(i)^3 = C \times PK_2 (1 - e^2)^{3/2} (K_1 + K_2)^2$$

$$\frac{M_1}{M_2} = \frac{K_2}{K_1}$$

DOUBLE-LINED ECLIPSING BINARIES

SPECTROSCOPY

PHOTOMETRY

WHEN COMBINED: MASSES AND RADII

BEDROCK OF STELLAR ASTROPHYSICS!

THEORETICAL EXPECTATIONS: MISSING PHYSICS?

SIGNIFICANT SCATTER IN OBSERVED M-R RELATION

SYNOPTIC SURVEYS TO THE RESCUE

■ <u>Problem 1</u>: Do stellar interactions bias radii? ■ Probability of eclipse \propto 1/a ■ If $\Delta R \propto 1/a^{N} \rightarrow$ biased toward big stars

SOLUTION: FIND LONG-PERIOD ECLIPSING SYSTEMS

PROBLEM 2: SMALL NUMBER OF M AND R MEASUREMENTS

SOLUTION: MONITOR LARGE NUMBER OF STARS!

SURVEYS LIKE LSST ADDRESS BOTH ISSUES

SDSS STRIPE 82 - A TESTBED

250 SQUARE DEGREES
UP TO 100 VISITS OVER 9 YEARS
NEAR-SIMULTANEOUS U,g,r,i,z
+/- 0.02 mag at γ=18
4 MILLION OBJECTS

S82 COVERAGE

See: Ivezić et al. (2007), Bramich et al. (2008), Sako et al. (2008)

BIG SIGNALS, SPARSE DATA

TYPICAL ECLIPSING BINARY

RELATIVE PHOTOMETRY

$\sigma(i)=25$ mmag at i=19

NON-GAUSSIAN TAILS

11,000 mid- to late-M stars

False Alarm Probability of Δi >0.2: ~10⁻³

EXPECTED RATE OF ECLIPSING SYSTEMS: 10-4

ECLIPSE SIGNALS

- Eclipses are achromatic: $\Delta z \sim \Delta i \sim \Delta r$

Eclipse Candidates

USING ALL THREE BANDS FAP<10⁻⁹?

 Δi vs. Δz correlation

CANDIDATE SELECTION

SDSS-MEB-1

SIMPLE SELECTION CRITERIA: $\Delta z \sim \Delta i \sim \Delta r > 0.2 \text{ mag}$

See also Becker et al. (2008,2011); Bhatti et al. (2010)

FOLLOWUP CHALLENGE

MASSES AND RADII AT i=18: EXPENSIVE PHOTOMETRY+SPECTROSCOPY

100 1% PHOTOMETRIC POINTS: 25 HOURS ON 1-2 M TELESCOPE

10 MODERATE-RESOLUTION SPECTRA:
 10 HOURS ON 8 METER TELESCOPE

FORMER 2MASS TELESCOPE
MT. HOPKINS, AZ
1.3 M - FULLY ROBOTIC
SIMULTANEOUS JHK IMAGING
PAIRITEL AUTOMATION TEAM:

J. BLOOM (PI)
C. BLAKE
D. STARR
W. PETERS

REAL-TIME SCHEDULING

MYSQL DATABASE

1000s of observations 100s of objects 10s of projects

SCHEDULING ALGORITHM

airmass

priority

weather

moon ephemeris

CONTROL PC

WEATHER/CLOUDS

PAIRITEL

DATA REDUCTION

GRB ALERTS

PAIRITEL SCIENCE

GRBS

PAIRITEL PHOTOMETRY

SDSS-MEB-1

1000 INDIVIDUAL OBSERVATIONS OVER 30 DAYS
PERIOD = 0.41 DAYS

RADIAL VELOCITIES

RADIAL VELOCITIES REQUIRED TO GET MASSES RESOLVING LINES OF BOTH STARS CHALLENGING

SDSS-MEB-1 SPECTRUM

RADIAL VELOCITIES

KECK+LRIS: 10 SPECTRA AT R~3500, 600S EXPOSURES

Hα lines: σ~10 km/s

K1=108 км/s K2=122 км/s Known Period

TWO OF THE SMALLEST STARS WITH MASS AND RADIUS MEASUREMENTS

Parameter	Value
$M_1 (M_{\odot})$	0.272 ± 0.020
$M_2 (M_{\odot})$	$0.240 {\pm} 0.022$
$a(R_{\odot})$	$1.850 {\pm} 0.047$
$R_1 (R_{\odot})$	$0.268 {\pm} 0.0090$
$R_2 (R_{\odot})$	$0.248 {\pm} 0.0084$

Pan-STARRS Simulations Dupuy and Liu (2009, ApJ, 704,1519)

Prediction: ~200 EBs in Pan-STARRS "3π Survey"

Photometry: 3000 m²-hours of telescope time Spectroscopy: 7000 m²-hours of telescope time

SDSS SPECTROSCOPY

R~2000 380 to 920 nm 84,000 M stars

TIME BETWEEN 1ST AND 3RD SPECTRA

CAN THE SDSS SPECTRA BE USED TO CONSTRAIN THE STATISTICAL PROPERTIES OF SHORT-PERIOD BINARIES?

SPECTROSCOPIC BINARIES IN SDSS

M STAR

A=0.2 AU

M STAR

P~40 DAYS

$\Delta RV \sim 20$ KM/s

0~4 km/s ~8000 M stars Detectable Even With Only Three Spectra?

The Close Binary Fraction of Dwarf M Stars

Benjamin M. Clark

Penn Manor High School, 100 East Cottage Avenue, Millersville, PA, 17551

Cullen H. Blake

Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544

Gillian R. Knapp

Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544

RV CONTROL SAMPLE

-TIME BETWEEN OBSERVATIONS: Δt <2 HOURS

-7,000 M DWARFS (16<i<20.5; i-z > 0.3)

SPECTRA VISUALLY INSPECTED

EMPIRICAL RV ERROR DISTRIBUTION

EXPERIMENTAL SAMPLE

-TIME BETWEEN OBSERVATIONS: 2< Δt <30 days

1,700 M DWARFS (16<i<20.5; i-z > 0.3)

SPECTRA VISUALLY INSPECTED

MONTE CARLO SIMULATIONS

What is N, the Binary Fraction at *a*<0.4 AU?

P(N) Given RV and P(Δ RV) \prec

EMPIRICAL ERROR DISTRIBUTION (CONTROL SAMPLE)

BINARY EXPERIMENTAL FRACTION SAMPLE (6000 RVS)

How many binaries detected given P(ΔRV)?
 Given N, how many binaries should be detected given the <u>detection efficiency</u>?

CPU MONTH

CLOSE BINARY FRACTION

Posterior Distribution for N

N vs. Primary Mass

BINARY FRACTION: FUNCTION OF STELLAR MASS

See also Fischer & Marcy (1992); Lada (2006); Raghavan et al. (2010)

CONCLUSIONS

SYNOPTIC SURVEYS: RICH WITH LOW-MASS STAR SCIENCE

ECLIPSING BINARY STARS: TEST MODELS FOR BOTTOM OF MAIN SEQUENCE

BINARY STATISTICS: PIECE OF THE FORMATION-HISTORY PUZZLE

CHALLENGE: HEAVY BURDEN ON FOLLOWUP OBSERVATIONS

LOW-MASS STAR FORMATION OBSERVED BINARY PROPERTIES

THEORETICAL PREDICTIONS:
1. MASS RATIOS~1 ✓
2. BINARY FRACTION~40% ✓
3. SMALL a > LARGE a

RV ESTIMATION

15-MINUTE SPECTRUM

SPECTRAL TEMPLATE FROM BOCHANSKI

CROSS CORRELATION

BARYCENTRIC MOTION

STAR FORMATION

SEPARATION

DISTRIBUTION

2008

<u>Bate et al.</u>

30 Bate et al. 2008 Multiplicity Fraction 0.8 Ш 20 NRESO 0.6 Number 0.4 10 0.2 0.001 0.01 0.1 10 100 0.001 0.01 0.1 1 100 1000 104 10 105 1 Mass $[M_{\odot}]$ Semi-major Axis [AU]

TOTAL BINARY FRACTION

RESULTS OF SPH SIMULATIONS

S82 M DWARF LIGHT CURVES

=11,000 M STARS, M4 AND LATER, i < 20

New pipeline to generate <u>relative</u> photometry:
 Ensemble of nearby reference stars

PHOTOMETRIC RECALIBRATION

MONTE CARLO SIMULATIONS

What is N, the Binary Fraction at *a*<0.4 AU?

POSTERIOR DISTRIBUTION

SURVEY SENSITIVITY

PRIOR

$P(N | RV, P(\Delta RV)) \propto P(RV | N, P(\Delta RV)) \cdot P(N)$

BINARY FRACTION EXPERIMENTAL SAMPLE (6000 RVS) EMPIRICAL ERROR DISTRIBUTION (CONTROL SAMPLE)

ASSUMED BINARY PROPERTIES

e=0 a: uniform q: power-law i: random

STELLAR ACTIVITY: M DWARFS

FOREGROUND FOG FOR COSMOLOGICAL TRANSIENTS?

GOAL: THE OVERALL STATISTICAL PROPERTIES OF FLARES

STELLAR FLARES

COMPLEX, POORLY-UNDERSTOOD PHENOMENA

EMISSION FROM RADIO TO XRAY

FLARES IN STRIPE 82

QUIET

= 40,000 M stars, 1.6x10⁶ observations = More than 100 $\Delta u > 1.0$ mag events

FLARING

U BAND MOVIES

FLARE DUTY CYCLE

<u>Overall Duty Cycle</u>: Δu>1.0 mag: M1 ~ 5x10⁻⁵ M4 ~ 8x10⁻⁴ M6 ~ 1x10⁻²

REDDER STARS: MORE AND LARGER FLARES ~ 1 FLARE/HOUR/ \Box° IN STRIPE 82 (u<21)

FLARE ENERGIES AND RATES

Kowalski et al. (2009)

Hilton et al. (2010)

FLARE ENERGY

FLARE DUTY CYCLE

FLARE RATES

FLARE RATE DECREASES WITH STELLAR AGE

FLARE RATES

H α Activity Fraction

FLARE LUMINOSITY AT d=200 PC

FLARE COLORS

FLARES ARE VERY BLUE

IMPORTANT CAVEATS:

→ u filter has red leak → ~2 minutes between u and g (drift scan)

SDSS SPECTROSCOPY: THE TIME DOMAIN

FLARE SPECTRA

Hilton et al. (2010)

LINE FLICKERING

RV SHIFTS

LOW-MASS BINARIES

LOW-MASS STARS G STARS

1] MASS RATIOS: q~1 q~0.3

2] AVG. SEPARATION: 7 AU 30 AU

3] A>50 AU SYSTEMS: NO

4] TOTAL FRACTION: ~20%

2MASSW1017075+130839 2MASSW1112256+354843 2MASSW1127534+741107 2MASSW1146344+223052

YES

60%

LOW-MASS STARS IN THE TIME DOMAIN

STELLAR STRUCTURE, EVOLUTION, AND FORMATION

KOCH CONFERENCE

CULLEN BLAKE