The Earth's Energy budget: Balance and Imbalances, Knowns and Unknowns Lazaros Oreopoulos, Climate and Radiation Lab (613)

✓ Our understanding of the Earth's energy budget in the last ~15 years
 ✓ The major balances and imbalances
 ✓ The relative radiative importance of atmospheric gases
 ✓ The role of clouds

The big picture

The level of detail we need to know!

Table 9. Global Average Monthly Means for the Four Seasonal Months (January, April, July, and October), (Pseudo) Annual Mean Based on the Four Seasonal Months From April 1985 to January 1989, and Annual Mean Based on 12 Months for 5 Years (1985–1989)

	1986–1989 Jan.	1985–1988 April	1985–1988 July	1985-1988 Oct.	Pseudo ANN ^a	5-Year, 12-Month ANN
$S _{\epsilon}$	352.97	339.28	330.96	344.03	341.81	341.82
$S\uparrow$	112.07	104.55	99.80	105.87	105.57	105.71
S	195.50	190.84	179.96	191.42	189.43	189.21
St.	26.08	26.16	20.03	23.79	24.01	24.02
L_{L}	0.00	0.00	0.00	0.00	0.00	0.00
$L\uparrow t$	231.33	231.86	236.04	233.29	233.13	233.29
$L_{\rm s}$	337.47	342.97	353.13	344.58	344.54	344.65
$L\uparrow_s$	386.95	397.91	402.28	395.56	395.67	395.58
CLR-SL	352.97	339.28	330.96	344.03	341.81	341.82
$CLR-S\uparrow_t$	56.48	57.62	52.12	54.59	55.20	55.36
$CLR-S_{\downarrow_S}$	260.32	246.81	235.28	251.06	248.37	248.26
CLR-S	32.01	32.60	25.12	29.03	29.69	29.82
$CLR-L\downarrow_t$.00	.00	.00	.00	.00	.00
$CLR-L\uparrow_t$	257.31	259.42	261.79	258.87	259.35	259.48
$CLR-L\downarrow_s$	304.62	312.70	323.96	313.76	313.76	313.54
$CLR-L\uparrow_s$	385.35	396.44	400.88	394.08	394.19	394.08
$CLD-S\downarrow_t$	352.97	339.28	330.96	344.03	341.81	341.82
$CLD-S\uparrow_t$	126.68	117.35	113.84	119.47	119.33	119.52
$CLD-S \downarrow_s$	176.71	174.52	163.02	175.01	172.32	172.01
CLD-S _s	23.33	23.79	18.20	22.13	21.86	21.84
$CLD-L\downarrow_t$	0.00	0.00	0.00	0.00	0.00	0.00
$CLD-L\uparrow_t$	225.34	224.98	229.23	226.88	226.61	226.80
$CLD-L\downarrow_s$	352.53	356.62	367.31	358.53	358.75	358.97
$\text{CLD-}L\uparrow_s$	387.67	398.57	402.96	396.23	396.36	396.27
$CFC-S\downarrow_t$	0.00	0.00	0.00	0.00	0.00	0.00
$CFC-S\uparrow_t$	55.59	46.93	47.68	51.27	50.37	50.34
$CFC-S\downarrow_s$	-64.82	-55.98	-55.32	-59.64	-58.94	-59.05
$CFC-S\uparrow_s$	-5.92	-6.44	-5.09	-5.24	-5.68	-5.80
$CFC-L\downarrow_t$	0.00	0.00	0.00	0.00	0.00	0.00
$CFC-L\uparrow_t$	-25.97	-27.56	-25.75	-25.58	-26.22	-26.19
$CFC-L\downarrow_s$	32.84	30.27	29.17	30.82	30.78	31.11
CFC- $L\uparrow_s$	1.60	1.47	1.40	1.48	1.49	1.50

The outdated picture (but still in the 2007 4AR IPCC report)

From Kiehl and Trenberth (1997)

Revisions to the 15 yr old picture (1)

From Wild (2012) (A **facelift** for the picture of the global energy balance)

Revisions to the 15 yr old picture (2)

Trenberth et al. (2009)

Energy imbalances

Surface and atmosphere radiative imbalances

From Stevens and Schwartz (2012)

Surface (SFC) gains: 163+344-398=109 Atmosphere (ATM) loses: 77+(398-240)-344=-109

From SFC to ATM: 88+21=109

Seasonal cycle imbalance

Stability of the Earth's albedo

10-yr CERES EBAF. Blue curve is 10-yr mean. Gray shading indicates range

Annual Zonal radiative imbalance

TOA net radiation loop (from CERES data)

from http://earthobservatory.nasa.gov

Planetary scale imbalance

nature geoscience LETTERS PUBLISHED ONLINE: 22 JANUARY 2012 | DOI: 10.1038/NGE01375

Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty

Norman G. Loeb^{1*}, John M. Lyman^{2,3}, Gregory C. Johnson³, Richard P. Allan⁴, David R. Doelling¹, Takmeng Wong¹, Brian J. Soden⁵ and Graeme L. Stephens⁶

Revisions to the 15 yr old picture (2)

Trenberth et al. (2009)

The role of atmos. gases

Attribution of greenhouse effect

Table 1. Effect of Each Absorber on the Percentage Net LW Absorbed by the Circa 1980 Atmosphere for Each Absorber Being Removed (Minimum Effect) and for That Absorber Acting Alone (Maximum Effect)^a

From Schmidt et al. (2010)

^a"All GHGs" encompasses CO₂, CH₄, N₂O, CFCs, and O₃. "All Others" refers to all absorbers other than H₂O, CO₂, and clouds. The attribution columns account for overlaps for "all-sky" and "clear-sky" conditions. Multiply all percentages by 155 W/m² to get the equivalent change in radiative flux units.

The role of clouds

Time Series of Cloud Fraction during the Daytime (March 2000-December 2011)

Cloud fraction loop (from MODIS data)

from http://earthobservatory.nasa.gov

Cloud LW effect (1)

Level	Clear			Cloudy		
Wm-2	DOWN	UP	NET	DOWN	UP	NET
ΤΟΑ	0	266	266	0	240	240
SFC	314	398	84	344	398	54

TOA effects of clouds: ~ 26 Wm⁻² (~11%), SFC effect ~30 Wm⁻² (~9%)

Level		Clear		Cloudy		
W m ⁻²	F _d	$\mathbf{F}_{\mathbf{u}}$	Net	$\mathbf{F}_{\mathbf{d}}$	F _u	Net
ТОА	0	265	265	0	235	235
SRF	278	390	112	324	390	66

CERES EBAF

Cloud LW effect (2)

(a) Longwave BOA CRE

Cloud SW and net effect

Level	Clear			Cloudy		
Wm-2	DOWN	UP	NET	DOWN	UP	NET
ΤΟΑ	340	52	288	340	99	241
SFC	244	30	214	187	24	163

CERES EBAF

TOA effects of clouds: ~ -47 Wm⁻², SFC effect ~-51 Wm⁻²

Net TOA: -47(SW)+26 (LW) = -21 Wm⁻² Net SFC: -51(SW) + 30(LW) = -21 Wm⁻² Net ATM = -21(SW)-(-21)(LW)=0 Wm⁻²

CERES Data Fusion: Net Radiative Effects of Clouds on Earth's Radiation Budget

Top-of-Atmosphere (-20.9 Wm⁻²)

- SORCE-TIM: Solar Irradiance
- CERES: Reflected Solar, Emitted Thermal Flux
- MODIS: Cloud Detection & Properties
- 5 Geo Satellites: Diurnal Cycle

Within-Atmosphere (0.4 Wm⁻²)

- AIRS: Temperature/Humidity Profile
- MODIS: Aerosol & Cloud Properties
- CALIPSO: Cloud & Aerosol Profiles
- Cloudsat: Cloud Profile
- GMAO Reanalysis: Atmospheric State
- Aerosol Assimilation

Surface (-21.3 Wm⁻²)

- MODIS: Surface albedo, emissivity
 & temperature
- NSIDC: Snow, sea-ice coverage

Take home points

- •We have made significant progress quantifying Earth's main energy flow components
- This is because of advances in both satellite observations and modeling
- Because of satellites we know the radiative fluxes better at TOA than at SFC
- Surface gains radiative energy, atmosphere loses
- Low latitudes (35°S to 35°N) gain radiative energy, rest of the planet loses

 Current data suggest that the planet emits less LW than absorbs SW, extra energy stored in the ocean

Greenhouse agents in order of importance: water vapor, clouds, carbon dioxide

Clouds are very important: increase SW reflectance to space, reduce SW flux transmitted to surface, reduce LW emission to space, increase LW emission to surface

Overall clouds cool the planet. Almost all of this is realized at the surface

Predicting how energy flow components will change in the future is challenging, but is critical for understanding climate change.

Extra slides

Annual net radiation at TOA low latitudes gain, high latitudes lose

Annual mean TOA SW CRE = $-47.1W \text{ m}^{-2}$

Annual mean TOA LW CRE = $26.5W \text{ m}^{-2}$

Sfc SW CRE = $-47.8W \text{ m}^{-2}$

Sfc LW CRE =25.5W m^{-2}

Net surface CRE = $-22.3W \text{ m}^{-2}$

Atmospheric SW CRE = $3.0W \text{ m}^{-2}$

Atmospheric LW CRE = $-0.8W \text{ m}^{-2}$

Atmospheric Net CRE =2.2W m⁻²

LW within the atmosphere $=-182.3W m^{-2}$

Net Flux within Atmospheric = $-109.1W \text{ m}^{-2}$

	1986-1989 Jan.	1985-1988 April	1985–1988 July	1985-1988 Oct.	Pseudo ANN ^a	5-Year, 12-Month ANN
NS,	240.90	234.73	231.16	238.16	236.24	236.11
NSs	169.42	164.67	159.94	167.63	165.42	165.19
NSa	71.48	70.05	71.22	70.53	70.82	70.92
NL	-231.33	-231.86	-236.04	-233.29	-233.13	-233.29
NLs	-49.48	-54.94	-49.15	-50.97	-51.14	-50.93
NLa	-181.85	-176.92	-186.89	-182.32	-181.99	-182.36
N_t	9.57	2.87	-4.88	4.87	3.11	2.82
N _s	119.94	109.73	110.79	116.66	114.28	114.25
Ňa	-110.37	-106.87	-115.67	-111.79	-111.17	-111.44
CLR-NS _t	296.49	281.66	278.84	289.44	286.61	286.46
CLR-NS _s	228.31	214.21	210.16	222.03	218.68	218.44
CLR-NS _a	68.18	67.45	68.68	67.40	67.93	68.01
CLR-NL	-257.31	-259.42	-261.79	-258.87	-259.35	-259.48
CLR-NLs	-80.72	-83.74	-76.92	-80.32	-80.42	-80.54
CLR-NL _a	-176.58	-175.68	-184.88	-178.55	-178.92	-178.94
$CLR-N_t$	39.19	22.24	17.05	30.57	27.26	26.98
CLR-N _s	147.59	130.47	133.24	141.71	138.25	137.90
$CLR-N_a$	-108.40	-108.23	-116.20	-111.15	-110.99	-110.93
CLD-NS _t	226.30	221.93	217.12	224.56	222.48	222.30
CLD-NS _s	153.38	150.73	144.83	152.87	150.45	150.16
CLD-NS _a	72.92	71.20	72.29	71.68	72.02	72.14
$CLD-NL_t$	-225.34	-224.98	-229.23	-226.88	-226.61	-226.80
CLD-NL _s	-35.14	-41.95	-35.65	-37.69	-37.61	-37.31
CLD-NL _a	-190.20	-183.03	-193.58	-189.19	-189.00	-189.49
$CLD-N_t$.96	-3.06	-12.10	-2.33	-4.13	-4.50
CLD-N _s	118.24	108.78	109.18	115.18	112.84	112.86
$CLD-N_a$	-117.28	-111.83	-121.28	-117.51	-116.98	-117.36
CFC-NS _t	-55.59	-46.93	-47.68	-51.27	-50.37	-50.34
CFC-NS _s	-58.89	-49.54	-50.22	-54.40	-53.26	-53.25
CFC-NS _a	3.30	2.60	2.54	3.13	2.89	2.91
CFC-NL _t	25.97	27.56	25.75	25.58	26.22	26.19
CFC-NL _s	31.24	28.80	27.77	29.35	29.29	29.61
CFC-NL _a	-5.27	-1.24	-2.01	-3.77	-3.07	-3.42
$CFC-N_t$	-29.62	-19.37	-21.93	-25.70	-24.15	-24.16
CFC-N _s	-27.65	-20.74	-22.46	-25.05	-23.97	-23.65
CFC-Na	-1.97	1.36	.53	64	18	51

Table 10. Global Average Monthly Means for the Four Seasonal Months (January, April, July, and October), (Pseudo) Annual Mean Based on the Four Seasonal Months from April 1985 to January 1989, and Annual Mean Based on 12 Months for 5 Years (1985–1989)