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1. ABSTRACT

This Report presents methods for simulating and for analyzing the azimuthal distribution of scat-
terings produced by a partially or completely linearly polarized beam of X-rays. The results should
be useful both in the design of missions to measure the polarization of X-rays from astronomical
sources and in the drawing of conclusions from data produced by such missions. Besides confirming
previous results, in particular those of Strohmayer & Kallman (2013, ApJ, 773, 103), for low polar-
ization amplitudes, they provide an analytical treatment for the full range of possible amplitudes.
This work is also described in (Montgomery & Swank 2015, ApJ, 801, 21; arXiv:1501.02222), which
also discusses, and provides references to, its relation to other work on this topic.

2. GENERATION AND ANALYSIS OF SIMULATED DATA

A beam of X-rays that is partially linearly polarized, when passing through an appropriate medium,
can produce scattered photons, by Compton scattering, or scattered (ejected) electrons, by the
photoelectric effect. The distribution of scattering into different directions in the plane perpendicular
to the beam is influenced by the polarization of the X-rays. Observations of this distribution, as
indicated by detections of photons or electrons scattered in different azimuthal directions, enable
estimates of the amount of polarization in the beam and its direction. The goal of this work is to
find how the observed distribution can be used to obtain estimates of the extent and direction of
polarization in the incoming beam, along with quantitative evaluations of the uncertainties in those
estimates.

Since the probabilities of scattering either photons or electrons has the same dependence on scatter-
ing angle, most of what follows could be applied to either physical mechanism, mutatis mutandis;
for simplicity we will speak only of measurements using the photoelectric effect.

The partially polarized incident beam of X-rays can scatter electrons into various azimuthal angles
around the axis of the incident beam. We want to estimate the degree of polarization in the incident
beam, and its direction, from the observed numbers of electrons scattered into different azimuthal
angles, and also to estimate the uncertainties in those estimates.
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The polarized component of the beam scatters electrons into an azimuthal angle φ, measured from
the direction of the incident polarization, with a probability proportional to cos2(φ), while the un-
polarized component of the beam scatters electrons isotropically. In general, if the true polarization
is at an angle φ0 in a coordinate system, φ should simply be replaced by (φ− φ0).

So we suppose that the number of scattered electrons reaching detectors, per unit time, at an
azimuthal angle between φ and (φ+ dφ), can be expressed as proportional to [I0 + U0 cos(2φ)]dφ.

This form ranges from I0 − U0 to I0 + U0 and has an amplitude of variation a0 = U0/I0.
a0 is one of the physically significant quantities that we would like to estimate.

The detectors are taken to divide the interval from −π to +π intoM equal angular bins, each of size
2π/M radians. M is an odd integer large compared with unity. The bins can be labelled with an
index j which runs from −(M −1)/2 to +(M −1)/2, with the center of the jth bin at φj = 2πj/M .

The expected number of counts in the jth bin in a time T is

< nj >=
κ

M
[I0 + U0cos(2φj)] =

κI0
M

[1 + a0 cos(2φj)]. (1)

κ includes geometric and efficiency factors; it is proportional to T .

It is important to recognize that while the flux of electrons in different directions is correctly
described by equation (1) the values of nj are independent Poisson-distributed random variables,
with these mean values (and variances). The total number of counts

N =
∑
j

nj (2)

is then Poisson-distributed with a mean (and variance) equal to

< N >= κI0. (3)

So a set of samples generated with the same < N > will have different total count numbers.

The mathematical properties of the nj values enable a number of useful facts about the statistical
properties of various quantities related to them to be derived.

To estimate the incident polarization amount and direction from an observed set of nj values, we
seek to represent their angular distribution by a function describing the counts as a function of
angle:

f(φ) = If + Uf cos(2φ) +Qf sin(2φ). (4)

Then the amount and direction of the incoming beam can be estimated in the usual way. For the
amplitude of polarization the estimate is

ae =
(
U2
f +Q2

f

)1/2
/If (5)



– 3 –

and the polarization angle estimate is

φe =
1

2
arctan(Qf/Uf ). (6)

The arctangent function in this equation is actually the two-argument arctangent function [repre-
sented in many programming languages as atan2(Qf,, Uf )]. Technically, it is the principal value of
the argument of the complex number Uf + iQf . Its values range from from −π to +π radians, so
φe ranges from −90◦ to +90◦ .

Multiplying the function f(φ) by any constant produces no change in the amplitude and angle
estimates.

There is a useful graphical representation of the results. To simplify the notation somewhat, let U ′

stand for Uf/If and Q′ stand for Qf/If . Then the amplitude and angle estimates are just given by

ae =
√
U ′2 +Q′2 (7)

and
φe =

1

2
arctan(Q′/U ′). (8)

If we think of U ′ and Q′ as the rectangular coordinates of a point, these are the polar coordinates
of that point: ae is the distance of the point from the origin and 2φe is the angle between the line
from the origin to the point and the U ′ axis. It will be seen that it can be convenient to discuss
the geometry of U ′ and Q′ in the U ′Q′ plane and then, if desired, represent the results in plots of
φe and ae.

The angular distribution of the set of nj values for a sample will of course include deviations from
the simple form of equation (4) because of the statistical nature of the counting process. In order to
select a set of three values, If , Uf , and Qf , to describe the behavior of an observed distribution of
counts, we view f as part of a discrete trigonometric interpolating polynomial, where the terms in
the polynomial series are the ones that reflect the properties of the distribution that are of physical
interest. They reflect the polarization of the incoming radiation and enable estimates of its direction
and amplitude. This approach, based on the basic theory of discrete Fourier transforms, provides
results with useful mathematical properties.

We choose to express the angular distribution as

f(φj) =
M

2π
nj (9)

The coefficients If , Uf , and Qf are then sums over the angles φj :

If =
1

2π

∑
j

nj (10)

Uf =
1

π

∑
j

nj cos(2φj)
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Qf =
1

π

∑
j

nj sin(2φj)

The coefficients If , Uf , and Qf are random variables, the sums of linear combinations of the random
nj values. By the Lyapunov central limit theorem their distributions become normal as M becomes
large enough, with means and variances that can be calculated using the sums over j of polynomials
in cos(2φj) and sin(2φj).

The mean value of If is

< If >=
1

2π

∑
j

< nj >= κI0/(2π) =< N > /(2π) (11)

The other mean values are

< Uf >= κU0/(2π) =< N > a0/(2π) (12)

< Qf >= 0

The variance of If is

Var(If) =
1

4π2

∑
j

Var(nj) =
1

4π2

∑
j

< nj> =< N > /(4π2) (13)

and by similar calculations the variances of Uf and Qf are each equal to

σ2f = κI0/(2π
2) =< N > /(2π2). (14)

The covariance of Qf with either If or Uf is zero, but the covariance of Uf with If is < N > a0/4π
2

and the correlation of Uf and If is a0/
√

2. (For φ0 6= 0, the correlation of Qf with If is also
nonzero.)

The coefficients If , Uf , and Qf are not statistically independent, since they are calculated from the
same set of nj values. In fact If , Uf , and Qf are trivariate normal. This is helpful in derivations of
the distributions of the physically important quantities U ′ and Q′. Correct distributions for U ′ and
Q′ and thus for ae and φe can be generated by simulations in which theM values of nj are randomly
generated for each sample, and the resulting values of If , Uf , Qf and thence U ′ and Q′, are used
to get ae and φe. The simulated samples are found to agree well with the theoretical distributions
described in what follows.

The points for a collection of samples will be centered around the U ′, Q′ point with coordinates a0,
0. Let us call that point Z. The probability density for points, that is, the probability per unit
area in this plane, describes what fraction of the points from a set of many samples will have those
locations. A line of constant probability, a closed curve enclosing the point Z, identifies the region
within which a specific fraction of samples will lie, and thus the likelihood of that set of amplitude
and angle estimates. Figure 1 provides an example for a low true amplitude., showing four sets of
100 samples each, together with the theoretical contour corresponding to 1-sigma.



– 5 –

The joint distribution of If , Uf , and Qf obtained in this way as the parameters describing the
angular distribution of counts allows a calculation of the marginal distribution of U ′ and Q′. For
large < N >, U ′ and Q′ are independent and normally distributed. Details are given in Appendix
A, which also provides the joint distribution of U ′ and Q′ before any approximation of large < N >.

The calculation also provides the means and variances of U ′ and Q′:

< U ′ >= a0 ; < Q′ >= 0 ; (15)

Var(U′) =
2

< N >
(1− a20/2) ; Var(Q′) =

2

< N >
. (16)

These results are confirmed by the results of simulations for the full range of amplitude values from
0 to 1.

The probability density for a system point would be the product of the probability density for U ′

and the probability density for Q′ . But these are simply Gaussians with the derived variances and
means. Figure 2 shows the results of simulations for a true polarization a0 = 3/4, along with the
Gaussian distributions with the calculated means and variances.

With the definition of λ as the ratio of the standard deviations:

λ2 =
σ2Q′

σ2U ′
=

1

1− a20/2
(17)

and denoting σQ′ simply as σ′, the probability per unit area in the U ′Q′ plane is also a Gaussian:

PU ′Q′(U ′, Q′) =
λ

2πσ′2
exp[−(U ′ − a0)2λ2/2σ′2] · exp(−Q′2/2σ′2) (18)

=
λ

2πσ′2
exp(− D2

2σ′2
),

with
D2 = (U ′ − a0)2λ2 +Q′2. (19)

It is worth noting that while these results were derived with the point Z on the U ′ axis (i.e., with
φ0 = 0) they can be expressed in a way that is more general. Let us define 2η as the angular
difference between the location of Z and the location of a data point. When Z is on the U ′ axis,
η is just φe. But in general U ′ in the above equations is ae cos(2η) while Q′ is ae sin(2η). Then
Equation (19) becomes

D2 =
[ae cos(2η)− a0]2

1− a20/2
+ a2e sin2(2η). (20)

In this form it involves only the distances of Z and the data point from the origin and the angle
between them, and is correct for any choice of a reference direction.

Lines of constant probability in the U ′Q′ plane are ellipses, centered on the point Z, with minor
axes along the line from the origin to the point Z, and the ratio of major to minor axes equal to
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λ. An example is shown in Figure 3. D is the semi major axis of the ellipse. The area within an
ellipse with a given D is πD2/λ. The total probability of a point lying outside the ellipse with a
given D is just exp(−D2/2σ′2) (as long as D2 << 1.) See Figure 4 for an example of agreement
between the probability distribution and a simulation with many samples.

This provides an extension of previous work, covering the full range of incident amplitudes, even
when the correlation of If with Uf changes the variance of U ′ enough to be important. The results
for U ′ and Q′ also give

Var(ae) = σ′2(1− a20/2), (21)

Var(η) =
1

4

σ′2

a20
. (22)

Since λ is quite close to unity unless the incident polarization amplitude is quite large, however, a
simpler approximation should often be applicable. Setting λ = 1 reduces D2 to

R2 = (U ′ − a0)2 +Q′2 (23)

This is simply the square of the distance from the point with rectangular coordinates U ′ and Q′ to
the point Z. The probability density is

PU ′Q′(U ′, Q′) =
1

2πσ′2
exp(−R2/2σ′2). (24)

The lines of constant probability are simply circles centered at Z. The probability that a point is
farther from Z than R is exp(−R2/2σ′2).

It is straightforward to reexpress this in terms of the polar coordinates ae and 2φe , noting that the
element of area in these coordinates is ae · d(ae) · d(2φe) . Also, the variance σ′2 = 2/ < N > can
be replaced by 2/N if the number of counts is large. The result is

P (ae, φe) =
Nae
4π

exp[−N
4

(a2e + a20 − 2aea0 cos(2φe))] (25)

which is the formula commonly used in discussions of this topic (with φ0 = 0).

Some details of our simulations and calculations are given in Appendix B, including the Fortran
program used in the simulations.

3. DRAWING CONCLUSIONS FROM AN OBSERVED DATASET

We turn now to the question of how we can draw conclusions about the magnitude and direction
of incoming X-rays from a single data set. We have the number of counts at each azimuthal angle
with respect to some angle on the sky. We calculate If , Uf , and Qf for our angular distribution
of counts, and from them we compute two quantities: U ′ and Q′. We can think of these as the
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rectangular components of a point in a coordinate system with the U ′ axis in our reference direction.
The origin of this coordinate system is the point corresponding to a completely unpolarized beam,
for which both components would vanish.

What we do not know but would like to draw conclusions about is the location of the point Z in
this coordinate system. By definition, Z is the point whose distance from the origin is the true
polarization amplitude a0 and which is in the same direction as the true polarization direction.

A contour line enclosing the observed data point can be defined by the fact that the probability
of the observed U ′ and Q′ values for any ZC (the C stands for “candidate”) located at a point on
that contour has the same value. Any point inside the contour is a location for ZC that gives a
probability of the data that is higher, and any point outside the contour is a location for ZC such
that the data has a lower probability. This defines a confidence region for ZC .

We want to find the coordinates of the points ZC for which the probability of the data point, with
coordinates U ′ and Q′, has a specified probability. The geometry of this situation is very similar to
the case previously studied, where one wanted to find which data points have a specified probability
when the true amplitude is known. We define the angle 2ηC as the angle between lines from the
origin to the data point and to ZC , the difference between the angular position of the data point
and the angular position of the point ZC .

In order to have a specified probability, the data point must lie somewhere on an ellipse whose
center is at the point ZC , whose major axis is perpendicular to the line from the origin to ZC and
has the length 2D, and whose minor axis is 2D/λC , with λC = 1/

√
1− a2C/2. D is related to the

probability in the same way as in the previous discussions; it depends only on the total number of
counts in the data set and the specified probability.

From the earlier section, the requirement for the desired probability is given by Equation (20), which
can be rewritten for the present purpose as

D2 =
[ae cos(2ηC)− aC ]2

1− a2C/2
+ a2e sin2(2ηC). (26)

We define a pair of new variables

u = aC cos(2ηC) ; v = aC sin(2ηC) (27)

which specify the location of ZC relative to the data point. Using these, the condition that the data
point have the correct position relative to ZC can be written as

u2(1 +D2/2)− 2aeu+ v2[1 + (D2 − a2e)/2] = D2 − a2e (28)

This is a quadratic in u and v and thus defines an ellipse. It is even in v, so the axes lie along
and perpendicular to the line from the origin to the data point. The quadratic equation for u
when v = 0 has two roots equidistant from u = ae/(1 + D2/2), so the center of the ellipse is
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located at u = ae/(1 + D2/2) ; v = 0. The v semi-axis is D/
√

1 +D2/2 and the u semi-axis
is [D/(1 + D2/2)]

√
1 +D2/2− a2e/2. (A more thorough and detailed derivation is provided in

Appendix C.)

Since the derivation of probabilities in the earlier section included neglecting D2 compared with
unity, it is not inconsistent to do the same here. The result is simpler than might have been
expected. The ellipse is centered on the data point and has axes of 2D and 2D/λe. The data point
and the candidate have changed places. Contour lines around the data point (in the U ′Q′ plane)
with a specified value of D are given by:

D2 = (u− ae)2λ2e + v2 (29)

where u = aC cos(2η) and v = aC sin(2η) as defined in Equation (31), and 2η is the angle between
the data point and the point on the contour.

Since the minor axis of the ellipse is on the line that passes through the origin and the data point,
the points which are closest to and farthest from the origin, and correspond to the smallest and
largest polarization amplitude, are the end points of the minor axis. In an amplitude-angle plot,
the maximum and minimum amplitudes occur at the same angle, and are equally spaced from the
center of the constant-probability contour. The reflection symmetry of the ellipse about its minor
axis guarantees that for any amplitude the two angles are above and below the central angle by the
same amount, so there is also a reflection symmetry in an amplitude-angle plot of the contour.

One can derive a description of probabilities similar to the situation of a known incident amplitude.
The area of an ellipse with a given value of D would be just πD2/λ, and the incremental area
between ellipses for D and D + dD would be proportional to DdD. An integral from D to infinity
is then proportional to exp(−D2/2σ′2). Normalization makes the probability outside the contour
equal to exp(−D2/2σ′2). It seems likely that in any practical situation there will be large enough
additional uncertainties in data acquisition not included in this statistical analysis that the difference
in the contours for approximate or full inclusion of D2dependence would not be important.

Figure 5 shows the implication of the results for a particular estimated polarization from a mea-
surement sample.

The marginal probability of U ′ and Q′ derived in the previous section is in terms of < N > for many
samples. For a single sample, one has only the N for that sample. Keeping in mind that it already
the case that < N > is large enough, and D small enough, to result in a Gaussian distribution
of probabilities in the U ′Q′ plane, it is reasonable to obtain the probability contour for a desired
probability level by using the value for D that would be the correct one if < N > were equal to
N . That contour is still a line of constant probability, but for a different probability if < N >

differs from the known N . The dependence of the probability on < N > is not a strong one though,
it is unlikely that < N > and N differ greatly, and the corresponding uncertainty may well not
be important. As an example, suppose we have a sample with N equal to 10000, and we want
a “1 sigma” contour. Our contour is actually the “1.01 sigma” contour if < N >is actually 10133
instead the 10000 value we used. If < N > is actually 9889, our contour is actually correct for
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“0.99 sigma”. So a difference of one standard deviation in how much N differs from< N >results
in a difference of about 1 percent in the “sigma value”. For the “3 sigma” contour, it is actually the
“3.02 sigma” contour if < N > is actually 10111, or the “2.98 sigma” if < N > is actually 9889. It
seems unlikely that this level of uncertainty in the true confidence levels for different probabilities
is important for indications of which physical situations and processes may be present at the source
object. It is not difficult to calculate the corresponding conclusions for other values of N if they
are wanted. (Here we are using the conventional description of probabilities with “sigma values”: “x
sigma” corresponds to the probability that a random value from a normal distribution differs from
the mean by x standard deviations or more.)

It has been mentioned that statistical variations in the recorded counts result in a positive probability
for any pair of U ′ and Q′ values, even improbable ones that might lead to amplitude estimates that
are larger than 1, while the true amplitude can only be zero or positive and less than or equal to 1.
This could complicate the correct conclusions that can be drawn from a single data set if the total
number of counts is too low or the confidence level chosen leads to a formal contour that extends
into regions where U ′2 + Q′2 is greater than 1. The simplest way to avoid such problems is just
to get more data, or choose a different confidence level, or both, so that the contour is completely
within the acceptable range. But if this is not feasible or desirable, one could impose restrictions
and provide a truncated confidence region.

4. SUMMARY

The methods presented here for generating simulated counts of scattered electrons at different
azimuthal angles, and for analyzing the resulting angular distribution, have the special advantage
of making it possible to derive rigorous results about the estimation of polarization amplitudes and
directions and their uncertainties. Alternative methods for generating simulations, and for analyzing
the angular distribution, should give results that are essentially similar to these, but some of the
predicted properties may only be observed rather than derived.

We confirm previous work on amplitude and angle estimates for cases in which the incident amplitude
is not too large. With our approach we are able to provide analytical treatment for larger incident
amplitudes, so that the entire physical range of possibilities is covered.
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A. THE DISTRIBUTIONS OF Uf , Qf AND OF U ′, Q′

It is useful to introduce another variable, linear in Uf and If . Because 〈Uf 〉 = a0〈If 〉, the mean
value of (Uf − a0If ) is zero and because the covariance of If with Uf is just a0 times the variance
of If , the covariance of (Uf − a0If ) with If is zero. The variance of (Uf − a0If ) is σ2f (1 − a20/2).
We introduce the quantity

λ = 1/
√

1− a20/2 (A.1)

and define the new variable
Vf = λ(Uf − a0If ). (A.2)

Vf has a mean value of zero and the same variance as Qf and is uncorrelated with If and Qf .

The three variables, If , Vf , and Qf are trivariate normal, and mutually uncorrelated, so they are
independent. Then the joint probability distribution function is given by

PI,V,Q(If , Vf , Qf ) =

√
2

(2πσ2f )3/2
exp[− 1

2σ2f
(2(If − 〈If 〉)2 + V 2

f +Q2
f )]. (A.3)

What we would like to have is the joint probability of Q′ = Qf/If and V ′ = Vf/If = λ(U ′−a0). To
obtain this, we transform to V ′ and Q′ as our variables, and integrate the probability of If , V ′, Q′

over If . For the transformation we have dV ′dQ′ = I2fdVfdQf . Since V ′ and Q′ only appear in the
combination

D2 = V ′2 +Q′2 (A.4)

and 〈If 〉 = 〈N〉/(2π) = πσ2f , the integral to be evaluated is

PV ′Q′(V ′, Q′) =

√
2

(2πσ2f )3/2

∫ ∞
−∞

dIfI
2
f exp[−

I2f
σ2f

(1 +D2/2) + 2πIf − π2σf 2], (A.5)

which can be evaluated exactly. It is convenient to introduce

σ′2 =
1

π2σ2f
=

2

〈N〉
(A.6)

. Then

PV ′Q′(V ′, Q′) =
1 + (1 +D2/2)/〈N〉

(1 +D2/2)5/2
1

2πσ′2
exp(− D2

2σ′2
). (A.7)

In any practical application, the value of 〈N〉 will be so large that the term proportional to 1/〈N〉
can be neglected in comparison with unity. Moreover, the values of D that might be of interest will
be small enough to justify replacing (1 + D2/2) with unity. Otherwise, the probabilities involved
are so small that they would be of no value. Accordingly the initial fraction in Equation(A.7) can
be dropped, leaving

PV ′Q′(V ′, Q′) =
1

2πσ′2
exp(− D2

2σ′2
). (A.8)

The distribution of D2 is just a chi-squared distribution with two degrees of freedom.
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Thus it is clear that

PU ′Q′(U ′, Q′) =
λ

2πσ′2
exp(− D2

2σ′2
). (A.9)

This is the form in which U ′ and Q′ are approximately independent normal variables with the
variance in U ′ lower than that of Q′ by 1− a20/2. These results for the variance of U ′ and Q′ agree
with the estimates given by considering 〈δ2U ′〉 and 〈δ2Q′〉, where expanding around the mean values
gives δU ′ = δUf/〈If 〉 − 〈Uf 〉δIf/〈If 〉2 and similarly for δQ′.

If φ0 6= 0, the following means and covariances have a φ0 dependence:

〈Uf 〉 =
〈N〉
2π

a0 cos(2φ0), (A.10)

〈Qf 〉 =
〈N〉
2π

a0 sin(2φ0),

〈δUfδIf 〉 =
〈N〉
4π2

a0 cos(2φ0),

〈δQfδIf 〉 =
〈N〉
4π2

a0 sin(2φ0).

It remains true that
〈δUfδQf 〉 = 0.

With

X = U cos(2φ0) +Q sin(2φ0), (A.11)

Y = −U sin(2φ0) +Q cos(2φ0),

Z = λ(X − a0If ),

corresponding to Equation (A.3), we have

PIZY (If , Zf , Yf ) =

√
2

(2πσ2f )3/2
exp[− 1

2σ2f
(2(If − 〈If 〉)2 + Z2

f + Y 2
f )]. (A.12)

X,Y are just a set of axes rotated from U,Q by 2φ0. Since

U = ae cos(2φe)

Q = ae sin(2φe),

we have

X = ae cos(2(φe − φ0))
Y = ae sin(2(φe − φ0)).

The probability only depends on the angle between ae and the true polarization a0, which is
2η = 2(φe − φ0).
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With X ′ = X/I ′, Y ′ = Y/I ′, and D2 = λ2(X ′ − a0)2 + Y ′2 the general result is derived as before,
and similarly, for large 〈N〉,

PX′Y ′(X ′, Y ′) ≈ λ

2πσ′2
exp(− D2

2σ′2
). (A.13)

B. COMPUTATIONAL REMARKS

This technical note describes the simulations done to explore the result of least squares calculations
of the Stokes parameters. These simulations were first done with Fortran routines. They are
discussed below and the Fortran program is given. Later the results of generating the data and
analyzing it in this way were compared, as discussed in Montgomery & Swank (2015), to the results
of generating it and analyzing it in the way described by Strohmayer & Kallman (2013). Much of
the comparison work used IDL with version 8.2 RANDOMU to generate Poisson variates. Fits were
carried out using IDL and the fitting routines based on MINPACK-1 (Markwardt 2009 ASP Conf.
Ser. 411, Astronomical Data Analysis Software and Systems XVIII, p. 251). As discussed in the
paper, differences found were ascribable to the differences between weighted and unweighted least
squares fitting.

While the discussion in this paper and in this technical note provides rather simple, closed form
expressions for amplitude and angle estimate uncertainties which should suffice for most applications,
the generation of samples is easy and not very time-consuming. In particular, for a given number
of angular bins, M , all the angular quantities required for evaluating the polynomial coefficients
will be the same for every sample, and can be computed once, before specific nj values have been
generated. Then each sum used in evaluating the values of If , Uf , and Qf is reduced to a simple
scalar product.

The following short and simple Fortran program can process several thousand samples, of several
thousand points each, in a few seconds on a fairly modest desktop or laptop computer. Besides
providing checks on the equations, it could be useful in situations where some of the approximations
used may not be valid. For example, if the number of bins is too small for the asymptotic normality
provided by the central limit theorem, it is easy to redistribute counts into the number of bins
available and proceed to find the amplitude and angle estimates for a large number of samples.

The program itself is written in Standard Fortran77, and so is also Standard F90 and F95 and
F2003 and F2008, and should work with no problems on any contemporary fortran system, but
should also be easy to rewrite in another language if desired: e.g. IDL, Matlab, Python, Haskell.

A couple of remarks about this specific program:

The random number generator used is the RAND function, which is not standard but almost
universally provided by Fortran compilers. It could, and probably should, be replaced by the
standard F95 subroutines RANDOM_SEED and RANDOM_NUMBER, which are also available
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on any fortran system less than 20 years old. Replacement with any other random number generator
would be simple. This application does not need a particularly good generator; any default is
probably adequate.

The function IPOISSON is a minimal one, adequate for this use. There are many more sophisticated
ones available. If the number of counts per bin gets up into the hundreds an improvement might be
desirable (or the number of bins increased). [The limitation comes from underflow in the exponential
of a large negative number, and is therefore quite system-dependent.]
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c pols im1 . f s imu la t i on o f counts and ana l y s i s f o r x−ray p o l a r i z a t i o n
c cgm 2013
c Standard Fortran77 except f o r " imp l i c i t none" and "rand" c
c Var iab le names intended to resemble those in text
c Nbar i s intended value f o r number o f counts
c Ntot i s a c tua l va lue in a p a r t i c u l a r sample
c Phies t i s ang le e s t imate in degree s
c Uz , Qz are d i sp lacements from point Z
c R2 i s square o f d i s t ance from Z
c D2 i s square o f e l l i p s e semi−major ax i s
c
c Usage : choose va lue s f o r Nsamp , Nbar , Azero
c ad jus t wr i t e statement i f d e s i r ed
c compile , l ink , execute .

imp l i c i t none
i n t e g e r Mbins , Nsamp , Ntot , i p o i s s on
parameter (Mbins = 499)
i n t e g e r i , k , ks
i n t e g e r nj (Mbins ) , seed (3 )
r e a l Nbar , Azero , OneoverPi , p , f , g , R
r e a l Vcos (Mbins ) , Vsin (Mbins )
r e a l Ic , Uc , Qc , Aest , Ph ies t
r e a l Uz , Qz , R2 , D2 , lam2

Nsamp = 49000
Nbar = 4000 .
Azero = 0.50

OneoverPi = 0.25/ atan ( 1 . 0 )
ks = (Mbins+1)/2
f = 16∗ atan ( 1 . 0 ) /Mbins
g = Nbar/Mbins
lam2 = 1.0/(1 .0 −0 .5∗Azero ∗∗2)

DO 10 k=1,Mbins
p = f ∗(k−ks )
Vcos (k ) = cos (p)
Vsin (k ) = s i n (p)

10 CONTINUE

CALL i t ime ( seed )
R=rand ( seed (1)∗ seed (2)+ seed ( 3 ) )
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OPEN (13 , f i l e =’psimout ’ )

DO 50 i =1,Nsamp
ntot = 0
DO 20 k=1,Mbins

R = g ∗( 1.0+Azero∗Vcos (k ) )
nj ( k ) = ip o i s s on (R)
Ntot = Ntot + nj ( k )

20 CONTINUE

Uc = 0 .0
Qc = 0 .0
DO 30 k=1,Mbins

Uc=Uc + nj (k )∗Vcos (k )
Qc=Qc + nj (k )∗Vsin (k )

30 CONTINUE

Uc=OneoverPi ∗ Uc
Qc=OneoverPi ∗ Qc
Ic = 0.5∗OneoverPi∗Ntot
Uz=Uc/ Ic−Azero
Qz=Qc/ Ic
R2=Uz∗∗2 + Qz∗∗2
D2=Qz∗∗2 + lam2∗Uz∗∗2
Aest = sq r t (Uc∗∗2 + Qc∗∗2)/ I c
Phies t = 90∗OneoverPi∗atan2 (Qc ,Uc)
WRITE(13 ,∗ ) Uz , Qz , Aest , Phiest , Ic , Uc , Qc

50 CONTINUE
CLOSE(13)
END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
f unc t i on i p o i s s on ( a )

C−−−−−−−−−−r e tu rn s i n t e g e r from Poisson d i s t r i b u t i o n with mean a
C−−−−−−−−−−−−uses i n t r i n s i c rand ( f l a g ) , which i s probably C srand
C−−−−−−−−−−−−can be slow f o r arguments much l a r g e r than 10
C−−−−−−−−−−−−not r e l i a b l e f o r arguments over 400 or so

r e a l a
double p r e c i s i o n b , c
i n t e g e r i
b=exp (−1.d0∗a )
i=−1
c=1
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10 i=i+1
c=c∗ rand (0)
i f ( c . gt . b ) goto 10
i p o i s s on=i
re turn
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C. DERIVATION OF CANDIDATE CONTOURS

The probability of a particular measured polarization, given a known true polarization, depends
only on D2 (Equation (20) in the text), where

D2 =
[ae cos(2η)− a0]2

1− a20/2
+ a2e sin2(2η). (C.1)

We wish to determine the candidate true polarizations aC at angle 2η from a measured polarization
amplitude and direction that would have a particular probability. The values must obey the same
equation with a0 → aC . The candidate point ZC has the projections u = aC cos 2η and v = aC sin 2η

parallel and perpendicular to ae. Then, using these substitutions and a2C = u2 + v2, Equation (28)
in the text is obtained, which can be written as

D2 − a2e − (u2 + v2)(1 +D2/2) + a2e
v2

2
+ 2aeu = 0. (C.2)

The following sequence of reorganizations:

(D2 − a2e)
1 +D2/2

− u2 − v2 +
a2ev

2/2

1 +D2/2
+

2aeu

1 +D2/2
= 0, (C.3)

(D2 − a2e)
1 +D2/2

− (u− ae
1 +D2/2

)2 +
a2e

(1 +D2/2)2
− v2(1− a2e/2

1 +D2/2
) = 0, (C.4)

D2

1 +D2/2
− a2e

1 +D2/2
(1− 1

1 +D2/2
)− (u− ae

1 +D2/2
)2 − v2(1− a2e/2

1 +D2/2
) = 0, (C.5)

D2

1 +D2/2
(1− a2e/2

1 +D2/2
)− (u− ae

1 +D2/2
)2 − v2(1− a2e/2

1 +D2/2
) = 0. (C.6)

leads to
D2

1 +D2/2
= (u− ae

1 +D2/2
)2/(1− a2e/2

1 +D2/2
) + v2. (C.7)

This is the ellipse centered on ae/(1 + D2/2), 0 with semi-axes (D/(1 + D2/2))
√

1− a2/2 +D2/2

and D/
√

1 +D2/2 for u and v, respectively. Now neglecting D2/2 compared to 1,

D2 =
(u− ae)2

1− a2e/2
+ v2. (C.8)
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Fig. 1.— (top) U ′ and Q′ for 4 sets of 100 simulations each for < N >= 1000, with the true
polarization along the Uf axis. Points from the different sets are indicated by triangles of different
orientation. The 68.3 % probability contour is centered on the point Z at a0 = 0.1, 0. (bottom)
The polarization amplitude ae and angle φe corresponding to the U ′ and Q′ results. φe is half the
angle between the U ′ axis and the direction to the point U ′, Q′.
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Fig. 2.— (top) Marginal distributions of Uf and Qf for 20, 000 simulations with < N >= 4000 for
a polarization a0 = 3/4 along the Uf axis. The theoretical distributions are the same. (bottom)
Marginal distributions of U ′ and Q′ for 20, 000 simulations with < N >= 8000 for a polarization
a0 = 3/4 along the Uf axis. Here the ordinate is the number of simulations in a bin. The curves
are the predictions for independent normal distributions.
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Fig. 3.— (top)Distribution of U ′ and Q′ for 20, 000 simulations (the same as for Fig 2, bottom)
with < N >= 8000, a0 = 3/4, and φ0 = 0. Contours of the predicted 1, 2, and 3 sigma levels
(68.27, 95.45, and 99.73 %) are superposed. 13597, 19010, and 19935 simulations fell within those
contours, in comparison to 13654, 19090, and 19946 expected. The semi-major axes are along the
Q′ axis and the semi-minor axes along the U ′ axis, centered on a0, 0. (bottom) The corresponding
ae and φe with their theoretical contours.



– 21 –

Fig. 4.— Distribution inD2 for a simulation with a0 = 3/4 and< N >= 4000, forNsample = 20, 000.
The number of samples in aD2 increment ∆D2 = 10−4, is plotted, normalized by Nsample∆D

2(= 2),
together with the expected values. For this case 1/2σ′2 = 1000. The probability for the measured
polarization to lie outside of D2 matches the predicted exponential.
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Fig. 5.— Examples of contours for the candidate true polarization quantities for a measurement of
ae = 0.9 and φe = 25 degrees. (top) Contour for 95.0 % (theoretical) confidence in U ′Q′ space for
the true polarization, for D = 0.0786. The dashed line indicates a candidate true polarization at
distance aC from the origin and angle 2η from the measured polarization. (bottom) Contours (solid
and dashed lines, respectively) of 1 sigma (68.3 %, red), 2 sigma (95.0 %, green) and 3 sigma (99.7
%, violet) for the true amplitude and angle, for N = 2000 events.


